
Muksis project

Testing plan

Richard Domander
Tuomas Mäenpää

Teemu Nisu
Tommi Teistelä

Version: 0.3
Public

November 25, 2008

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Approver Date Signature Name verification

Project manager __.__.2008
Customer __.__.2008
Supervisor __.__.2008

Public Testing plan 0.3 Muksis project

Document information

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668
• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465
• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310
• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

Document title: Muksis project, Testing plan
Pages: 11
Sourece file: testing_plan-0.3.tex

Abstract: Description of the testing strategy and methods used by the Muksis soft-
ware project. Includes test cases and information about sample data.
Keywords: Software project, black frame detection, DVB, MPEG, search in MPEG
TS, MPlayer.

i

Muksis project Testing plan 0.3 Public

Version history

Version Date Changes Authors

0.1 7.11.2008 First version TN

0.2 10.11.2008 Testing enviroment TM

0.3 19.11.2008 Reporting chapter and corrections TN

ii

Public Testing plan 0.3 Muksis project

Project information

Project Muksis designs and implements new features, like black frame detection,
support for DVB subtitles, and search in MPEG TS, to an open source media player
application MPlayer for Matthieu Weber. There is also an option to improve similar
existing features to meet the requirements.

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668
• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465
• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310
• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

Customer:
• Matthieu Weber mweber@mit.jyu.fi 014-2603056

Supervisors:
• Ville Isomöttönen vilisom@cc.jyu.fi 014-2604976

Contact information:
• Mailing lists: muksis@korppi.jyu.fi

• Archives: https://korppi.jyu.fi/kotka/servlet/

list-archive/muksis/

• Room: AgC 225.3 / 014-2604971

iii

Muksis project Testing plan 0.3 Public

iv

Public Testing plan 0.3 Muksis project

Contents

1 Introduction 1

2 Terms 2

3 Testing environments 4

4 Testing methods 5
4.1 Module testing . 5
4.2 Integration testing . 5
4.3 Beta testing . 5

5 Test cases 6
5.1 Black frame detection filter . 6

5.1.1 Detecting commercial breaks and writing EDL files 6
5.1.2 Handling PTS reset . 6

5.2 MPEG TS seek . 7
5.2.1 Accuracy . 7
5.2.2 Stress test . 7
5.2.3 Special occasions . 7

5.3 DVB subtitles . 8

6 Sample recordings 9
6.1 Commercial skipping . 9

6.1.1 House.mpeg . 9
6.1.2 Rakkauden_anatomia.mpeg . 9
6.1.3 jumppa.mpeg . 10

6.2 DVB subtitles . 10
6.2.1 FST-fin.mpeg . 10
6.2.2 FST-swe.mpeg . 10
6.2.3 dvb-TV1-subtitles.mpeg . 10
6.2.4 dvb-TV2-subtitles.mpeg . 10
6.2.5 medico_de_familia.mpeg . 10

7 Reporting 11

v

Muksis project Testing plan 0.3 Public

vi

Public Testing plan 0.3 Muksis project

1 Introduction

Muksis is a student software project in the Department of Mathematical Information
Technology at the University of Jyväskylä. During the fall 2008 and the beginning
of the year 2009 the project designs and implements new features to an open source
media player application MPlayer. The main new features are black frame detection,
support for DVB subtitles, and seek function to skip commercials based on black
frame locations. The project team has an option to improve similar existing features
possibly found in original MPlayer code or patches written by project client. The
software is made for Matthieu Weber who is a senior assistant in the Department of
Mathematical Information Technology at the University of Jyväskylä.

Working software is the most important goal of the project. To achieve this, exten-
sive testing is required. This document describes the testing strategy and methods
used to verify the functionality of the software.

The resulting software consists of multiple components, which are added to MPlayer.
Each component has specific requirements for testing. Special occasions as well as
general functionality of the component should be taken into account. Test cases are
used for testing the functionalities. The cases are listed in chapter 5. The software
works correctly when it produces satisfactory results from all cases. The results will
be reported in testing report.

Because changes in MPlayer’s source code are required, one major goal for testing
is to confirm that the original functionalities of MPlayer remain intact. Beta testing
will be used in attempt to eliminate any unforeseen side effects.

Terms used in this document are listed in chapter 2. Chapter 3 is about testing
environments. Chapter 4 briefly describes the methods used for testing. Test cases
are listed in chapter 5 and the sample material for testing in chapter 6.

1(11)

Muksis project Testing plan 0.3 Public

2 Terms

Following terms appear in this document:

Agile software development a software development process. Agile methods
emphasize real-time communication and work-
ing software as the primary measure of progress
using iterative development.

Software project course at The Department of Mathematical Infor-
mation Technology.

C a general-purpose programming language.

Demuxing means the same as demultiplexing, the opposite
of multiplexing.

DVB Digital Video Broadcasting, a set of open stan-
dards for digital television. Defines various de-
tails about the physical and data link layer-level
transmission of data, refers to existing MPEG stan-
dards for the actual format specifications where
possible. The data stream itself is an MPEG-2
Transport Stream with some DVB-specific con-
straints and may contain multiple channels.

IDE integrated development environment is an ap-
plication that provides tools for software devel-
opment.

Iterative development technique of developing and delivering incremen-
tal components of business functionality. A sin-
gle iteration results in one or more bite-sized but
complete packages of project work that can per-
form some tangible business function. Multiple
iterations recurse to create a fully integrated prod-
uct.

MPEG The Motion Picture Experts Group, a working
group of ISO/IEC. Also a common name for cer-
tain standards created by them.

2(11)

Public Testing plan 0.3 Muksis project

MPEG-2 The MPEG standard specifying video, audio and
related format specifications, primarily used for
DVDs and digital television broadcasting.

MPEG TS is a MPEG transport stream. It is a communica-
tion protocol for audio, video and data. It’s goal
is to allow multiplexing of digital video and au-
dio and to synchronize the output.

Multiplexing a process where multiple digital streams are com-
bined into one stream over a shared medium.

patch is a small piece of software designed to fix prob-
lems with or update a computer program. This
includes fixing bugs, replacing or adding features
and improving the usability or performance.

OSS open source software, a computer software, which
source code is made available under a copyright
license or arrangement. This permits users to
use, change, and improve the software, and to
redistribute it in modified or unmodified form.

Subversion is a free version control system. It is used to main-
tain current and historical versions of files such
as source code.

SVN is an abbreviation for Subversion.

3(11)

Muksis project Testing plan 0.3 Public

3 Testing environments

The implemented features were tested with the computers in the project room C225.3
by project members and with the Leffakone enviroment by the client. Some other
enviroments were also used.

The environment used in the room C225.3:

• Four computers with AMD Athlon 64 Processor 3500+, 2 GB of RAM and
NVIDIA Geforce 7300 graphics cards.

• Three of the computers had Fedora core 8, kernel 2.6.25.14-69.fc8 and one had
Microsoft Windows XP Professional version: 5.1.2600, Service Pack: 2.0.

• Four 19" Samsung SyncMaster 940B monitors.

• MPlayer version 1.0rc1 and the latest version from MPlayer SVN.

The Leffakone enviroment:

• Ahtlon XP 1800+ with 256 MB RAM and 120 GB HDD with the graphics Ma-
trox G400.

• Debian 3.0 Woody, with an home-made patch to XFree86.

• Matrox G400 graphics card, analog TV card Hauppauge WinTV Go and Haup-
pauge WinTV Nova T digital TV card.

• Regular TV, connected to the VGA connector.

• MPlayer version 1.0rc1.

Other enviroments:

• Ubuntu 8.04 running under VMware Player.

• Ubuntu 7.10 running under Athlon 1Ghz, 512 MB RAM.

4(11)

Public Testing plan 0.3 Muksis project

4 Testing methods

This chapter is about the methods used for testing the application. Since the nature
of the project differs quite a lot from a typical software project, some methods must
be adapted to fit the needs of the project.

4.1 Module testing

The purpose of module testing is to verify the functionality of each component de-
veloped. Since the components are basically just enchancements to MPlayer, the
components cannot be tested without being integrated to MPlayer first. This is why
module testing must be done in parallel with integration testing. Test cases for test-
ing the components are described in chapter 5.

4.2 Integration testing

The components developed during the project are quite individual and don’t inte-
grate to each other. They must however be integrated to MPlayer. The purpose of
integration testing is to verify that MPlayer works properly with the new features.

4.3 Beta testing

The group will deliver a test version of the software to Matthieu Weber for beta
testing it with his "Leffakone" which is practically the target system for the project.
At this point the testing will expand beyond the sample recordings described in
chapter 6. Any issues that haven’t emerged with the sample files will hopefully
come up during the beta phase.

5(11)

Muksis project Testing plan 0.3 Public

5 Test cases

Test cases are used to confirm that software works and fullfills the requirements.
Test cases can be applied at all phases of testing and the tests will be done with both
MPlayer-1.0rc1 and the latest SVN version of MPlayer.

5.1 Black frame detection filter

5.1.1 Detecting commercial breaks and writing EDL files

Description: The black frame detection filter must be able to correctly detect com-
mercial breaks from a video stream and write their starting and ending points to an
EDL file. Approximate times of commercial breaks in samples are listed in chapter
6.

Samples for testing: 6.1.1 __ 6.1.2 __

Result:

1. Advertisements were marked correctly. __ __

5.1.2 Handling PTS reset

Description: The EDL files created by the black frame detection filter must be cor-
rect even if there is a PTS reset in a recording.

Samples for testing: No testing material available at the time of writing this docu-
ment.

Result:

1. Advertisements were marked correctly despite the PTS reset. __ __

6(11)

Public Testing plan 0.3 Muksis project

5.2 MPEG TS seek

5.2.1 Accuracy

Description: To fulfill the requirements, MPEG TS seek must end up within one sec-
ond (± 0.5s) of it’s target unless the target is unreachable (beyond EOF for example).

Samples for testing: 6.1.1 __ and 6.1.2 __ for skipping commercials with EDL files.
6.2.1 __, 6.2.3 __ and 6.2.5 __ for testing general functionality by jumping back and
forth with the arrow keys.

Result:

1. MPEG TS seek is accurate enough. __ __

5.2.2 Stress test

Description: Even multiple seeks within a short period of time must not cause
MPlayer to fail. This can be tested with any of the samples by jumping backwards
and forwards repeatedly.

Samples for testing: 6.1.1 __ 6.1.2 __ 6.2.1 __ 6.2.3 __

Result:

1. Repetitive seeking does not cause crashing or freezing. __ __

5.2.3 Special occasions

Description: MPEG TS seek must be able to handle the following occasions:

• Jump to the beginning when trying to seek backwards over the beginning of
the recording.

• Jump to the end when trying to seek over the end of the recording.

• Seek accurately over a PTS reset.

• Seek accurately over starting and ending points of an EDL record.

7(11)

Muksis project Testing plan 0.3 Public

Samples for testing: 6.1.3 __ for seeking over PTS reset. 6.1.1 __ and 6.1.2 __ for
seeking around EDL skips. 6.1.1 __ and 6.2.3 __ for testing the other occasions.

Result:

1. Beginning of file __ __
2. End of file __ __
3. PTS reset __ __
4. EDL skip __ __

5.3 DVB subtitles

Description: Subtitles should be visible on all samples listed below.

Samples for testing: 6.2.1 __ 6.2.2 __ 6.2.3 __ 6.2.4 __ 6.2.5 __

Result:

1. General functionality __ __
2. Visual quality __ __
3. Timing __ __

8(11)

Public Testing plan 0.3 Muksis project

6 Sample recordings

Features are tested with several sample files recorded from the Finnish digital tele-
vision. Samples described in section 6.1 are recorded from MTV3 channel and they
are meant for testing black frame detection and MPEG TS seek. Samples for testing
DVB subtitles are recorded from YLE channels and they are listed in section 6.2.

6.1 Commercial skipping

Both black frame detection filter and accurate MPEG TS seek are required for suc-
cessful commercial skipping. The black frame detection filter must be able to mark
the starting and ending points of a commercial break correctly into an EDL file. Ac-
curate seek is needed for the actual skip.

6.1.1 House.mpeg

A recording from MTV3. Includes multiple commercial breaks. Approximate times
(PTS values) of the commercial breaks are listed below.

Commercials:

1. Start: 8372 End: 8409
2. Start: 8595 End: 8869
3. Start: 9726 End: 9965
4. Start: 10857 End: 11085
5. Start: 11815 End: 12009

6.1.2 Rakkauden_anatomia.mpeg

A recording from MTV3. Includes multiple commercial breaks. The recording stops
during commercials so the last skip should jump to the end of file. Approximate
times (PTS values) of the commercial breaks are listed below.

Commercials:

1. Start: 59270 End: 59599

9(11)

Muksis project Testing plan 0.3 Public

2. Start: 60252 End: 60564
3. Start: 61749 End: 62059
4. Start: 62695 End: 62725
5. Start: 62889 End: 63149

6.1.3 jumppa.mpeg

This file does not include any commercials but has a PTS reset, which the seek func-
tion must be able to handle.

6.2 DVB subtitles

6.2.1 FST-fin.mpeg

A recording from YLE FST channel with Finnish subtitles.

6.2.2 FST-swe.mpeg

A recording from YLE FST channel with Swedish subtitles.

6.2.3 dvb-TV1-subtitles.mpeg

A recording from YLE TV1 channel with Finnish subtitles.

6.2.4 dvb-TV2-subtitles.mpeg

A recording from YLE TV2 channel with Finnish subtitles.

6.2.5 medico_de_familia.mpeg

A recording from YLE Teema channel with Finnish subtitles.

10(11)

Public Testing plan 0.3 Muksis project

7 Reporting

The testing report will consist of the test cases presented in chapter 5 and error
reports. The results of test cases shall be reported by marking an ’X’ on the left-hand
line when succeeded and on the right-hand line in a case of failure. Sample files
used for testing can be marked by putting an X next to the reference of a sample in
the section that says "Samples for testing:".

Errors should be reported in detail to a report template like below. If the recording
the error occurred with is not described in this document, delivering the file to the
project team might help them to solve the problem.

Test case: ___ Sample file: _______________
Error description:

Tested by: ________________
Fixed: __.__.200_, _________

11(11)

