
Muksis project

Application report

Richard Domander

Tuomas Mäenpää

Teemu Nisu

Tommi Teistelä

Version: 1.0

Public

January 16, 2009

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Approver Date Signature Name verification

Project manager __.__.2009

Customer __.__.2009

Supervisor __.__.2009

Public Application report 1.0 Muksis project

Document information

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668

• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465

• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310

• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

Document title: Muksis project, Application report

Pages: 27

Source file: application_report-1.0.tex

Abstract: This is the application report of software project Muksis. This document

introduces the reader to the existing architecture and inner workings of MPlayer

(mainly version 1.0-rc1), and explores in detail the parts relevant to the features

implemented in Muksis project.

Keywords: Software architecture, black frame detection, DVB subtitles, seek in

MPEG TS, MPlayer

i

Muksis project Application report 1.0 Public

Project information

The architecture of MPlayer is highly modular, but somewhat ill-defined. It takes

a considerable time to understand it, and to figure out which parts need to be al-

tered during the implementation. This document is intended for people interested

in further development of MPlayer, and the features implemented in the Muksis

project.

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668

• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465

• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310

• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

ii

Public Application report 1.0 Muksis project

Contents

1 Introduction 1

2 Acronyms 2

3 MPlayer 3

4 Leffakone - the Target Environment 5

4.1 Usage of Black Frame Detection . 5

5 Black frame detection 7

5.1 Background . 7

5.2 Implementation . 7

6 MPEG TS seek 11

6.1 Background . 11

6.2 Implementation . 11

7 DVB subtitles 14

7.1 Background . 14

7.2 Implementation . 15

7.3 Version differences . 17

8 Audio filtering 18

8.1 Dynamic range compression . 18

8.2 Normalization . 19

9 File formats and Data structures 21

9.1 EDL file . 21

9.2 Structure and contents of MPEG TS . 21

10 Analysis 23

10.1 Known Bugs . 24

11 Testing 25

12 Bibliography 27

iii

Muksis project Application report 1.0 Public

iv

Public Application report 1.0 Muksis project

1 Introduction

The original purpose of the Muksis project was to provide commercial skipping

and DVB subtitle support for TV recordings in Matthieu Weber’s Leffakone home

theater environment. Weber had already implemented these features for an older

version of MPlayer (pre4) back in 2005, so we tried to either port or reimplement

them for a newer version of MPlayer.

Commercial skipping required black frame detection to find the commercial breaks,

and more accurate MPEG TS file seeking. DVB subtitle support required decoding,

drawing and timing of subtitle packets. It also required various changes throughout

MPlayer, because the program wasn’t designed to work with TV recordings, only

broadcasts. Weber also came up with an additional idea: he requested a possibility

to normalize and compress audio during playback.

We set out with the latest stable release of MPlayer at the time (1.0-rc2), but later

on Weber noticed he couldn’t compile it in Leffakone environment, so we reverted

back to version 1.0-rc1. During the project we decided to port the features for the

development (or SVN) version of MPlayer too. The differences between versions

affected mostly DVB subtitle support.

When we started the project, we thought that the implementation of the features

could provide to be a challenge, because the team didn’t have much experience in

working with a larger application that is written in a non-object-oriented language.

We estimated that handling the coherence and integration of the components is the

most demanding task, but the components proved to be very independent of each

other. The differences between the versions of MPlayer affected mostly the imple-

mentation of DVB subtitle support.

Chapter 3 introduces the general architecture of MPlayer, and explain which mod-

ules are used withMPEG TS files. Chapter 4 explains howMPlayer, and the features

implemented in the project are used in Leffakone environment. Chapter 5 describes

black frame detection, chapter 6 seeking, chapter 7 DVB subtitle support, and chap-

ter 8 audio filtering in more detail. Chapter 9 explores the various file formats and

data structures used in the project. In chapter 10 the implementation of the features

is analyzed, and in 11 their testing is explained. All the chapters apply to MPlayer

version 1.0-rc1 unless otherwise specified.

1(27)

Muksis project Application report 1.0 Public

2 Acronyms

The following acronyms and terms appear in this document:

Back-to-back testing Execution of a test on the similar implementations of soft-

ware and comparing the results

BFVF Black Frame Video Filter

CLUT Color look up table

Demultiplexing The act of separating elementary streams from MPEG TS

DVB subs Digital Video Broadcasting Subtitles

EDL Edit Decision List

EOF End of File

Elementary stream A video, audio or subtitle stream carried in MPEG TS

FIFO First In First Out

GOP Group of Pictures

GUI Graphical User Interface

MPEG TS Moving Picture Expert Group Transport Stream

PES Packetized Elementary Stream

PIC Programmable Interface Controller

PID Packet Identifier

PTS Presentation Time Stamp

2(27)

Public Application report 1.0 Muksis project

3 MPlayer

MPlayer is a cross-platform, open source media player, whose architecture can be

seen as an instance of the “Pipes and Filters” architectural pattern. This follows nat-

urally from the process of media replay on computers. There are myriads of codecs,

(de)multiplexers, and video processing filters formyriads of differentmedias, video,

audio and subtitle formats, video output streams, video effects and platforms. The

software is highly modular, but the responsibilities of the modules are somewhat

ill-defined, and everything revolves around mplayer.c. The structure of the pro-

gram has improved since MPlayer version 1.0-pre4, but is still in need of heavy

refactoring.

Mplayer.c runs the show on a high level: it handles and delegates user input,

keeps the play list up to date, and figures out the necessary components for playback

(decodec, demultiplexer, subtitles, media handling...). With command line param-

eters the user can, amongst other things, choose a video codec, subtitle and audio

language, and add various video filters and change their individual parameters.

In the MPlayer software package there’s also MEncoder which is a versatile video

decoding, encoding and filtering tool.

Figure 3.1 explains what happens when you play a MPEG TS file with MPlayer.

First the individual streams are demultiplexed in demux_ts.c. During the replay

the user can seek the file (change position in the streams), or supply MPlayer an

EDL file which, for example, makes MPlayer skip commercials. All seek commands

are passed to demux_ts.c, because it knows how to change position in the streams,

and how to resynchronize them after seeking. Before presentation the streams are

decoded, for example, dvbsub.c handles the decoding of DVB subtitles. With fil-

ters various effects (audio compression, video de-interlacing...) can be added to

video and audio streams before presentation. Black frame detection (vf_bf.c) also

acts as a filter, but instead of processing the picture data, it only marks down all the

black frames it finds into an EDL file.

3(27)

Muksis project Application report 1.0 Public

Figure 3.1: General architecture of MPlayer 1.0-rc1

4(27)

Public Application report 1.0 Muksis project

4 Leffakone - the Target Environment

Leffakone is Matthieu Weber’s home theater PC (see figure 4.1). Leffakone runs on

an old PC, which has a DVB tuner, a timer device, and an infrared receiver. A TV

antenna is connected to the DVB tuner. The timer is used via parallel port, and is

connected to the Wake-on-LAN, so that the computer can be powered up when it’s

time to record a TV program. The infrared sensor is used to pick up signals from a

remote control.

On the software level Leffakone consists of the assembly code for the PIC of the

timer device, the python code for automating recording and shutting down the

computer after recording, Lirc for handling infrared signals, and Freevo, which is

a personal video recorder application for Linux. Freevo uses MPlayer (version 1.0-

rc1) to display and record TV broadcasts. Freevo uses X Window System for its

GUI.

4.1 Usage of Black Frame Detection

In Leffakone environment black frame detection is used in two phases. In phase one

(see figure 4.2) shortly after the recording has started, MPlayer is starts to run the

recording through the BFVF to create an EDL file (see chapter 9) for it. Only one

video, audio and subtitle stream is recorded. The DVB tuner selects these streams

from the MPEG TS. In phase two (see figure 3.1) the recording is opened with the

newly created EDL file, which then controls the playback of the file, i.e. commercial

breaks are skipped.

5(27)

Muksis project Application report 1.0 Public

Figure 4.1: The structure of Leffakone

Figure 4.2: Creation of a TV recording and EDL file in Leffakone

6(27)

Public Application report 1.0 Muksis project

5 Black frame detection

5.1 Background

The purpose of black frame detection is to create an EDL file, which can be used

to skip commercials during playback of TV recordings. BFVF can be used to detect

commercials because commercials are short sequences between black frames. When

the user requests video filters with command line parameters, MPlayer passes the

request to vf.c, which manages the video filter chain. Vf.c then parses the com-

mand line parameters, opens the specified filters, supplies them their individual

parameters, and arranges them to a linked list. During playback decoded video

frames pass through this chain of filters before they reach video out (see figure 5.1).

Video filters are very independent. In addition to programming the BFVF itself, you

only have to mention the new filter in vf.c and the Makefile of libmpcodec so

thatMPlayer and the compiler find it. While processing the video BFVF’s put_ima-

ge() function writes the PTSs of the detected commercials into an EDL file. The file

is opened in BFVF’s vf_open() function, and freed in vf_uninit(). Together

with accurate MPEG TS seeking the generated EDL file can be used to skip com-

mercials during playback. The EDL file is described in detail in chapter 9.

The structure of MPlayer has improved since version pre4, and you don’t need to

get the PTS of a decoded frame as an external variable from dec_video.c any-

more. Nowadays there’s a version of put_image(), which has PTS as one of its

parameters. The parameter is passed to it by vf.c.

5.2 Implementation

Black frame detection was ported from Matthieu Weber’s old code. Some refactor-

ing was done, for example calcimg(), which decides whether a frame is black

or not, was cleaned up. There was some redundancy (copy-paste code), “magic

numbers” i.e. constants with no explanation, and variables with confusing names.

The detection algorithm itself wasn’t changed. While doing “printf debugging”

we noticed that vf_config() gets called every time video parameters change,

for example, a commercial may use different aspect ratio than the program, so

no initializations should be done in this function. There was also a memory leak:

7(27)

Muksis project Application report 1.0 Public

Figure 5.1: Architecture of black frame video filtering

vf_priv_s structure was never deallocated. Now free() for the structure is

called in vf_uninit().

Vf_priv_s structure holds the pointer to the EDL file to be written, and variables

necessary for detection of commercials: length of the current sequence between

black frames, time when the previous black frame sequence started, length of the

previous black frame sequence etc.

Calcimg(), which is called in put_image(), decides whether a frame is black or

not by calculating the average luminance value of the frame, and marking down the

highest individual luminance value. If both values are below their corresponding

thresholds, the frame is considered to be black.

Put_image() is called once for every video frame. It creates the markings for the

resulting EDL file. A possible commercial break is considered to begin when a black

frame is detected, i.e. a black sequence begins. The length of the non-black sequence

following the black sequence is measured. If the length of the non-black sequence

before a new black sequence is shorter than ad_max_len the sequence is considered

to be an ad. As long as the program detects new ads the end of the commercial break

8(27)

Public Application report 1.0 Muksis project

is moved to the middle of the latest black sequence (see figure 5.2). A commercial

break ends when a non-black sequence longer than ad_max_len is encountered. If

EOF is encountered, and the length of the sequence between the latest black frame

and EOF is shorter than ad_max_len then the end of the commercial break is set to

EOF (note: this is done in vf_uninit()!).

In Weber’s patch the commercial break was marked to the EDL file from the begin-

ning of the starting black sequence to the end of the ending black sequence. We

changed it so that it now marks the skip from the middle of the starting black se-

quence to the middle of the ending black sequence. This was changed because of

the MPEG format, i.e. if we jump to a frame that is not the key frame of the GOP

an ugly “mosaic” is seen. This doesn’t bother as much if the frame is black. Also,

the short black sequence now seen in the middle of the program lets the user know

a jump occurred. We think it’s now less confusing if a new program starts after a

commercial break.

The thresholds, EDL filename and ad_max_len can be changed by the user with

command line parameters. The default values for the thresholds and ad_max_len

were experimentally determined by Weber. According to him the program is “99%

accurate” with them. The parameters are parsed in vf_open(). We changed the

implementation so that an error message is printed if all the given parameters can-

not be parsed. Default value is used for the faulty parameter, and all the parameters

following it. Default values are also used if the user gives no parameters.

A mention of our BFVF was added to vf.c and Makefile. In versions pre4, rc1,

and rc2 the Makefile in sub folder libmpcodecs needs to be changed. In the current

development version of MPlayer you modify the Makefile in the root folder of the

program.

9(27)

Muksis project Application report 1.0 Public

Figure 5.2: Commercial detection in BFVF

10(27)

Public Application report 1.0 Muksis project

6 MPEG TS seek

6.1 Background

In order to skip commercials during playback, we need to be able to seek accurately,

i.e. to change position in the streams in MPEG TS. During playback mplayer.c

waits for keyboard events, and stores the detected key presses into a FIFO buffer.

If a seek command (i.e. a key mapped to seek is pressed) is detected, a seek is ini-

tiated by mplayer.c. A seek can also be automatically initiated by an EDL file.

First mplayer.c calls the seek function of the generic demultiplexer (demuxer.c).

The generic demultiplexer checks if the file format and selectedmedia allow seeking

(for example, DVD allows, TV does not), calculates the distance of the seek target

from the current file position, and makes other necessary preparations (resets the

synchronization of the demultiplexed streams, for example). The generic demulti-

plexer has a function pointer to the seek function of the format or media specific

demultiplexer (in this case demux_ts.c). The specific seek function does the ac-

tual seeking. After the seek in demux_ts.c is done, that is: after the correct new

position in the video is found and audio is synchronized with video, mplayer.c

calls update_subs() function in mpcommon.c (see chapter 7). Update_subs()

initiates the subtitle format specific tasks needed to display current subtitles.

6.2 Implementation

The improved seek code in demux_ts.c was redone to study different ways of

implementing it. The basic principle remains the same, however.

As the MPEG-TS stream by itself doesn’t contain a typical header-like structure to

refer to, the seek function must work by estimating the bitrate of the stream and

using the MPEG timestamps in it as references.

The modified seek function first stores the current MPEG video timestamp from the

demuxer’s state (sh_video->pts) in a temporary variable and resets the buffers

used to store already decoded video, audio and subtitle frames by calling reset_fi-

fos(). Then, it takes the demuxer’s current bitrate estimate, calculates a new posi-

tion in the input file and seeks in the raw file stream by calling stream_seek().

Since seeking backwards accurately is generally more difficult, the modified seek

11(27)

Muksis project Application report 1.0 Public

Figure 6.1: Architecture of MPEG TS seeking

function attempts to avoid doing so by performing shorter seeks when moving for-

ward in the stream, and longer seeks when moving backwards. This also largely

avoids the issue of running into the end-of-file when seeking is performed near the

EOF and the demuxer has overestimated the stream’s bitrate.

Following the seeking in the raw file stream the function attempts to find the video

stream again by calling sync_video_packet() and, if any audio is present, re-

synchronizes the audio and video streams by calling skip_audio_frame() until

the audio timestamps’ values are greater than those of the video timestamps.

After the synchronization the last video timestamp (updated during the synchro-

nization) is compared to the one stored at the beginning of the seek. If the difference

is more than 0.5 seconds and the seek attempt has been repeated less than 16 times,

the seek function attempts to perform another seek using the difference as the seek

duration. The 16 repeat limit prevents a situation where the synchronization code

ends up repeatedly “cancelling” a short backwards seek, which could lead to an

infinite loop.

If the difference is less than 0.5 seconds, the seek function simply stops (seeking

12(27)

Public Application report 1.0 Muksis project

more accuratelywould require implementing the seek functionality on a lower level,

taking the different types of MPEG frames into account and possibly requiringmod-

ifications elsewhere, too) The possibility of the timestamp values resetting some-

where between the beginning and the end of the seek is dealt with by testing if

the new timestamp value is off by more than several minutes in the “wrong direc-

tion” (compared to the seek duration) and changing the initial timestamp variable

to match the new situation.

13(27)

Muksis project Application report 1.0 Public

7 DVB subtitles

7.1 Background

YLE channels in Finland use DVB subtitles, which are separate from the video

stream. In order to show these subtitles, we need to implement timing and decod-

ing of the DVB subtitles. Because both DVD and DVB subtitles are bitmaps (in most

cases anyhow) and both formats have support for multiple languages, you can take

advantage of the existing code for DVD subtitles in MPlayer. Essentially the data

structure spudec_handle_t in spudec_struct.h (see figure 7.1) acts as a wrap-

per for DVB subtitles. In our implementation, we utilize the packet queue in this

structure, and in the existing code decoded bitmap subtitles are passed on from this

structure to the displaying functions.

WhenMPlayer opens, it initializes DVB subtitles in mplayer.c by calling dvbsub-

_init_data(). During playback, and after seeking, mplayer.c calls the function

update_dvdsubs(). Update_dvdsubs() calls the functions necessary to handle

DVD and DVB subtitles. The function deduces the type of the subtitles from the

type of the demultiplexer. In case of DVB subs, update_dvdsubs() first calls

dvbsub_heartbeat() in dvbsub.c, which checks whether the first packet in

the decoding queue should be processed, i.e. is the current time stamp ≥ packet

time stamp. When a packet is processed in dvbsub_decode() the resulting image

is handed to the spudec structure, from which the image goes on to the display-

ing functions. After calling dvbsub_heartbeat(), update_dvdsubs() loops as

long as it can get PES packet data from the buffer of the subtitle stream, i.e. as long

as it can call ds_get_packet_sub() in demux.c successfully. After every call to

ds_get_packet_sub(), update_subs() calls dvbsub_assemble(), and pas-

ses it the received packet data. Dvbsub_assemble() adds the packet data to the

decoding queue of the spudec struct. When a new PES packet is added to the de-

coding queue in dvbsub_assemble(), time stamp and time out are added to the

these packets to ensure correct decoding, and thus presentation order, time and du-

ration. In summary, update_dvdsubs() does two things: it decodes the subtitle

packets, and makes sure that they are presented at the right time.

14(27)

Public Application report 1.0 Muksis project

Figure 7.1: Architecture of DVB subtitling

7.2 Implementation

The DVB subtitle packet processing code fromWeber’s patch was used almost as is.

Only the memory behavior was changed at first, and the drawing of the decoded

image was put into one function instead of two. In the patch code memory for the

decoded image was deallocated, and then allocated again every time the subtitles

changed. Also, in the old code, the need for memory was dynamically calculated

based on the dimensions of the subtitle regions. The code was changed so that the

maximum possible amount of memory needed (less than a megabyte) is allocated

before the first subtitle packet is decoded, and the subtitle regions are erased (filled

with 0) before a new packet is decoded. This change in memory usage was later re-

moved, because it created a conflict with vf_scale.c, and the gain in performance

wasn’t worth the time that would’ve been needed to resolve the issue.

During the project Weber noticed that he had supplied us with an outdated version

of his code. He then sent us the latest version he had coded. The newer version ren-

dered the subtitles better, so we included the changes it introduced to our version.

The old version didn’t initialize the pixel code (the CLUT index of the pixel’s color)

15(27)

Muksis project Application report 1.0 Public

to zero in decode_4bit_pixel_code_string() , and it miscalculated the alpha

values in set_palette(). Because of these errors, the background of the subtitles

wasn’t completely transparent, and the glyphs didn’t have sharp black edges.

During testing we noticed that with some files, the subtitles didn’t get shown at

all. There were two reasons for this problem. When a MPEG TS file is opened,

ts_detect_streams() in demux_ts.c reads a couple of seconds of the file to

find out which elementary streams it contains. The first reason for the problem

was that this probing for streams ended after a video and audio stream had been

found, i.e. it could end before the probing limit was reached, thus missing possible

subtitle streams starting in the beginning of the file. The premature exit condition

was changed so that the probing can end before the limit only if also a subtitle stream

is found, or no subtitles were requested (dvdsub_id=-2). The second reason for the

problemwas that demux_ts.cwas designed to workwith a TV broadcast, not a TV

recording, i.e. ts_parse() didn’t recognize the type of new elementary streams

without the meta data present in a TV broadcast (MPlayer records only one video,

audio and subtitle stream). We modified the function ts_parse() so that now if

it can’t recognize the elementary stream by any other means, it reads a packet (with

the help of pes_parse2()) from the file, and tries to get the type of the stream from

it. If the type is not recognized, the packet is discarded. If the type is recognized

(to be DVB subtitles) the position in the file is moved back to the beginning of the

packet so that the actual contents can be read. Also, the demultiplexer is updated to

use this stream, for example if the new stream is a DVB subtitle stream, the subtitle

id is changed to PID of the newfound stream. Ts_parse() is a rather confusing

function with a dual role: it is used both for the (initial) detection of streams, and

packet parsing during playback (reading a packet from the file, and then put it to

the corresponding output buffer [video, audio or subtitle] of the demultiplexer).

Some changes in mplayer.cwere needed to make the subtitles work. Several vari-

ables in MPlayer refer to the state of different kinds of subtitles. Relevant for DVB

subtitles are: dvdsub->id, which is used to request bitmap subtitles from the de-

multiplexer, sub_auto, which tells should subtitles be used at all, and demuxer-

>sub->id, which tells what is the PID of the subtitle stream currently used. If

sub_auto=0 (the user used parameter -noautosub) DVB subtitles aren’t initialized.

During playbackwe check if a subtitle streamwas found by comparing dvbsub->id

to demuxer->sub->id. Both equal -2 if no subs are requested. If no subs were

found in initial probing, both variables equal -1 when playback starts. If the vari-

ables become inequal during playback, it means subtitle stream has been found,

16(27)

Public Application report 1.0 Muksis project

and we set dvbsub->id to demuxer->sub->id, and call update_dvdsubs() to

show the first packet detected. The functionality now in update_dvdsubs() was

initially in the main() function in mplayer.c.

7.3 Version differences

The implementation of DVB subtitles differs a bit between the versions. In version

newer than rc2 function update_subtitles() in mpcommon.c is called instead

of update_dvdsubs() in mplayer.c as is done in rc1. The change was made to

clarify the responsibilities of different modules.

Instead of dvbsub->id and demuxer->sub->id as in rc1, mpctx->d_sub->id

and mpctx->demuxer->sub->id are used in rc2 and newer versions to check

whether we have found a subtitle stream during playback. Mpctx is a structure

of type MPContext. This is a sort of superstructure, which holds all the variables

and structures necessary for playback, so that they can be found in one place.

In versions newer than rc2 the spudec structure is initialized in function

init_vo_spudec() in mplayer.c. In rc1 it is initialized in the main() function

of mplayer.c.

17(27)

Muksis project Application report 1.0 Public

8 Audio filtering

Both the actual “peak” volume level and perceived volume (affected by the fre-

quency distribution and the dynamic range of the sound) tend to vary between dif-

ferent TV broadcasts, possibly more so than between different DVD movies, which

MPlayer was originally made to play. MPlayer’s current source tree does contain

some audio filters intended to control these aspects of the sound being played, but

both their documentation and implementation are somewhat lacking for the pur-

poses of Leffakone. The project team has thus decided to look at either improving

the existing filters or writing suitable ones from scratch.

MPlayer’s audio filter interface resembles that of the video filters: a filter has a stan-

dard interface structure containing function pointers for key operations, such as

(un)initializing the filter, configuring it and processing data through the filter. This

structure is added to the list of audio filters in af.c and the rest is handled by

MPlayer’s existing code. Through this interface, audio filters may receive parame-

ters from the command line or from other parts of the application, such as any of

the GUI frontends for MPlayer. Audio filters may be “chained” in the same way as

video filters.

8.1 Dynamic range compression

The “dynamic range” of any given information is the range of possible values be-

tween its lowest and highest levels. For audio, this can be considered the range be-

tween the most quiet (but still relevant for the experience) parts of the sound, such

as quiet speech, and the loudest parts of the sound, like gunshots or explosions. The

desirability of a high dynamic range in audio mostly depends on the quality of the

listening environment; with low-quality speakers or a noisy environment the most

subtle parts of high-dynamic range audio will be lost. Because of this the dynamic

range of audio is often reduced through dynamic range compression.

The Muksis project has implemented a new simple “hard-knee” dynamic compres-

sion filter (see figure 8.1) similar to that used by many hardware DVD players when

outputting sound to a device expected to be of low quality, such as the built-in

speakers of a TV. The filter’s source code can be found in af_newcomp.c, and it

can be controlled from the command line with parameters like

18(27)

Public Application report 1.0 Muksis project

Figure 8.1: A “hard-knee” audio compression filter

mplayer -af newcomp=0.7:0.5, where 0.7 is the compression threshold and

0.5 the ratio by which anything exceeding the threshold is compressed.

The exact function used when the input exceeds the filter’s threshold is:

output = (input − threshold) × ratio + threshold (8.1)

which scales the part exceeding the threshold by the compression filter’s ratio set-

ting.

8.2 Normalization

The actual “peak” volume level of audio tends to vary significantly from the maxi-

mum allowed by its format; this can make for an irritating listening experience. The

volume level can be corrected through normalization: applying a multiplier to the

audio sample values bringing the peak volume to the maximum level, or close to

it – generally, most implementations do not raise the peak volume to the absolute

maximum as this can result in distortion due to limitations in various parts of the

audio pipeline.

For short audio clips such as recorded music, this can be achieved easily by simply

scanning through the data and finding the highest absolute value, then amplifying

the sound by the maximum value divided by the highest value found, scaled to

whatever peak volume is desired. For very long audio clips or ones being currently

streamed, this approach can’t work and the normalization filter must instead react

to changes in the volume dynamically. The Muksis project has been looking at ways

to do this in MPlayer.

MPlayer’s own volume normalization filter in af_volnorm.c, while apparently

quite old and unmaintained in the rc1 version, was found adequate for the task.

19(27)

Muksis project Application report 1.0 Public

The filter can take two parameters, which are the compression method to be used

(the filter implements two, for some reason) and the average level the normalization

filter tries to maintain, given in a syntax similar to the other audio filters. When run

with no parameters, the filter tries to keep the peak volume at the maximum level

allowed.

20(27)

Public Application report 1.0 Muksis project

9 File formats and Data structures

9.1 EDL file

In our implementation EDL files are used to skip commercials during playback.

These files are automatically created by BFVF (see chapter 5). The format is very

simple, you only need begin and end timestamps (PTS) of the actions, and the types

of the actions, i.e. do you want to mute (=1) or skip (=0) a part of the video. Below

is an example EDL file.

Example EDL file

Begin End Type

8372.18 8409.26 0

8595.30 8869.18 0

9724.62 9965.10 0

10855.34 11084.90 0

11814.46 12008.66 0

9.2 Structure and contents of MPEG TS

In Finland digital television is broadcast in MPEG TS format. The broadcast con-

sists of several MPEG TSs, called “channel packets”. One MPEG TS consists of one

or more multiplexed programs, which consist of several streams. These streams

consist of PES packets, which can contain video, audio, subtitle, meta, or other,

so called private data (teletext, network information, encryption key for scrambled

channels...). These packets carry PTSs, which are used for timing. The meta data

tells which streams belong to which program. In TV recordings made by Leffakone

(see chapter 4) there’s only one video, audio and subtitle stream present. During

playback the demultiplexer separates these streams from each other.

The video format used in MPEG TS is MPEG 2. MPEG 2 videos consists of groups

of pictures (GOP), which hold 0.5 seconds of video. GOPs consist of different kinds

of frames: I-frames, P-frames and B-frames. I-frames are the key frames, they are

full pictures. P-frames only carry data which is used to create a displayed frame

by modifying the previous I-frame. B-frames are more complicated bi-predictive

21(27)

Muksis project Application report 1.0 Public

Figure 9.1: Structure of the MPEG Transport Stream

frames, i.e. they consist of modifications created by analyzing both the frame before

and after the B-frame.

A DVB subtitle packet holds one page instance, which is an unchanging set of sub-

titles. A page instance consists of several regions (areas upon which subtitles can

appear), which consist of objects. One object depicts one glyph. A page instance can

also be an “end of display set”, which is used to signal that the current subtitles can

be cleared.

22(27)

Public Application report 1.0 Muksis project

10 Analysis

It’s not certain howmuch the implementation could be changed, because the biggest

tasks came from the unexpected bugs that just needed to be solved the way they

were. The parts that could’ve been implemented differently were the parts ported

from Weber’s patch, i.e. the rather independent technical solutions to the required

features. Only our implementation of MPEG TS seeking differed in more than su-

perficial manner.

• The advertisement recognition code in BFVF’s put_image() function could

be refactored to ease maintaining and understanding. One useful abstraction

for it could be the state machine (i. e. state of recognition: black sequence has

begun, in non-black sequence etc). The structure vf_priv_s in vfbf.c could

be used to hold the state, and other variables of the state machine. On the other

hand, state machine can make the code more complicated than necessary.

• Calcimg() could be changed to detect sequences of different (uniform) col-

ors, because sequences between commercials aren’t black in all countries. The

color could be supplied with command line parameters. Sometimes TV broad-

casters don’t follow standards, and sequences between ads aren’t uniform in

color i.e. the network logo isn’t removed. Commercial detection could be

improved by monitoring the audio levels too, i.e. instead of searcing black

frames, the filter would be searching black, silent frames. This interplay be-

tween audio and video inspection would be difficult, or rather arduous, to

implement given the MPlayer architecture.

• Themodified demux_seek_ts() function’s implementation in demux_ts.c

tries to maintain the MPlayer version’s overall structure as far as possible to

make the difference between versions seem less radical. Still, the complexity of

the function is easily twice the original’s (not that it was very complex). Some

further possible cleanup and performance “tuning” will be investigated before

the end of the project in January.

• As explained in chapter 7 we tried to change the memory behaviour of DVB

subtitle decoding, but this caused a conflict with the software scaling filter

(vf_scale.c). Still, the memory behaviour could probably be modified to

use a constantmemory block, and to onlywipe clean the regions, which changed

between page instances. One could try to add support for colored subtitles,

23(27)

Muksis project Application report 1.0 Public

but that would require changing spudec.c, which uses a grayscale palette.

Though, the more changes you make the more difficult it is to get your patch

approved by the MPlayer developers.

• The audio compression filter in af_newcomp.c was done from scratch as the

existing compression filter in MPlayer was found too complicated and appar-

ently suffering from some bit rot. As the project’s requirements for it were

rather simple, so is its implementation – for example, it doesn’t try to main-

tain the original volume range of the audio it receives (this could probably be

changed in 5 lines of code or so), because the client was specifically interested

in changing the absolute volume range from 0-1 to around 0-0.8 due his sound

card producing distorted sound at peak levels. The input audio’s range could

also be restored by chaining MPlayer’s normal audio volume filter after the

compressor if necessary.

10.1 Known Bugs

The MPEG Transport Stream seeking code has a bug that can cause erratic behavior

if the user rapidly triggers two seeks without allowing the player to play any video

between them. This is caused by the seek code initially relying on a certain times-

tamp variable (there are multiple ones) in the demuxer’s internal state that is only

updated during normal video playback. If the seek attempts are in different direc-

tions and one is longer than the PTS reset detection threshold, this can also cause

the PTS reset detection to trigger unexpectedly and seek well past the end of file,

ending video playback.

Attempts to make the code update the variable after finishing a seek as well did

not produce any results - the variable is touched by something else. Correcting the

error would likely require changes elsewhere in theMPlayer code, possibly breaking

other things the team is unaware of. Since the primary method of input for the

Leffakone environment is a remote control, which can’t easily produce input fast

enough to trigger the bug, this was not considered a critical flaw by the client.

24(27)

Public Application report 1.0 Muksis project

11 Testing

This chapter summarizes the testing process, and the results in general. Test round

specific results are collected on separate testing reports. Methods of testing are pre-

sented in the Testing plan [1].

Test cases were used for getting a more systematic approach to the testing. This

proved to be useful, since it brought up some of the issues that weren’t noticed

during the implementation phase. Running the test cases also supplemented the

results of ad-hoc testing done during the implementation, and revealed if fixing a

bug presented a new one.

Test cases were run four times with rc1 and once with the SVN version (the final

rounds with the SVN version had not been run by the time of writing this docu-

ment). The code for the new features is basically the same in both versions. So if

bugs were found while testing with rc1, there was no point testing the code with the

SVN version before fixing the bugs. A kind of back-to-back testing was used while

solving some of the bugs to see if they are specific to a certain version of MPlayer.

Beta testing was done with rc1 version only, since versions later than that do not

compile on Leffakone.

Testing went mostly like planned, but it took more time than anticipated. This was

mostly caused by the complexity of MPlayer, which made locating and fixing bugs

quite difficult. Also fixing some bugs brought up new ones, which made the testing

phase longer. Especially the MPEG TS seek feature was problematic in this manner.

An overall result of testing was that many bugs were found, and almost all of them

were fixed. Supposedly the only remaining issue is seek going wild when repeated

rapidly (Described in Chapter 10). There was also a tricky subtitle delay problem,

but luckilyMatthieu found a solution for it. The summary of the testing is presented

in Table 11.1.

25(27)

Muksis project Application report 1.0 Public

Round Date Version Errors Comments

1 25.11.2008 rc1 2 First round with rc1. Problems with seek

accuracy and subtitle timing.

2 26.11.2008 SVN 2 First round with SVN version. Had the

same issues as rc1.

3 1.12.2008 rc1 2 Beta test by Matthieu Weber.

4 5.12.2008 rc1 3 Accuracy of MPEG TS seek was improved,

but the correction brought up an issue with

successive seeks. Subtitles were not tested,

but the delay was still there.

5 13.1.2008 rc1 2 Final round with rc1. Subtitle delay fixed.

Table 11.1: Summary of the test rounds.

26(27)

Public Application report 1.0 Muksis project

12 Bibliography

[1] Richard Domander, Tuomas Mäenpää, Teemu Nisu, Tommi Teistelä, "Testing

plan of the Muksis software project", University of Jyväskylä, Department of

Mathematical Information Technology, 2008.

27(27)

	Introduction
	Acronyms
	MPlayer
	Leffakone - the Target Environment
	Usage of Black Frame Detection

	Black frame detection
	Background
	Implementation

	MPEG TS seek
	Background
	Implementation

	DVB subtitles
	Background
	Implementation
	Version differences

	Audio filtering
	Dynamic range compression
	Normalization

	File formats and Data structures
	EDL file
	Structure and contents of MPEG TS

	Analysis
	Known Bugs

	Testing
	Bibliography

