
Muksis project

Project report

Richard Domander
Tuomas Mäenpää

Teemu Nisu
Tommi Teistelä

Version: 1.0
Public

16th January 2009

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Approver Date Signature Name verification

Project manager __.__.2009
Customer __.__.2009
Supervisor __.__.2009

Public Project report 1.0 Muksis project

Document information

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668
• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465
• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310
• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

Document title: Muksis project, Project report
Pages: 34
Source file: project_report-1.0.tex

Abstract: This is the project report document of the software project Muksis. This
document describes the follow-through of the project and analyzes how well the
project plan was followed during the project. The document begins with explaining
the accomplishments and the resources of the project and after that the process and
schedule are described. In the later part of the document the management methods
and risks are analyzed. In the end the personal experiences of the project members
are revealed.
Keywords: Software project, black frame detection, DVB, MPEG, search in MPEG
TS, audio filter, MPlayer.

i

Muksis project Project report 1.0 Public

Version history

Version Date Changes Authors

0.1 17.11.2008 The framework of the document. TM
0.2 24.11.2008 Introduction. TM
0.3 13.12.2008 Terms, Resources and Process and

schedule.
TM

0.4 15.12.2008 Accomplishments, Tasks, workload
and division of labour, Management
methods, Risks and Personal experi-
ences.

RD, TN, TM, TT

0.5 13.01.2009 Corrections for the project report that
were found during the document’s
inspection.

RD, TN, TM, TT

0.6 15.01.2009 Some more corrections to Manage-
ment methods and Risks.

TM

ii

Public Project report 1.0 Muksis project

Project information

The software project Muksis designed and implemented new features to the open
source media player application MPlayer. The customer of the project was Matthieu
Weber, who needed these features in his home theatre environment. The imple-
mented features were black frame detection for skipping commercials, support for
DVB subtitles, search in MPEG TS to complete the commercial skip and audio filters
for compressing and normalizing the audio signal.

Authors:
• Richard Domander (RD) dimadoma@jyu.fi 050-3482668
• Tuomas Mäenpää (TM) tutamaen@jyu.fi 040-7600465
• Teemu Nisu (TN) tejonisu@jyu.fi 040-8349310
• Tommi Teistelä (TT) totateis@jyu.fi 045-6528709

Customer:
• Matthieu Weber mweber@mit.jyu.fi 014-2603056

Supervisors:
• Ville Isomöttönen vilisom@cc.jyu.fi 014-2604976

Contact information:
• Archives: https://korppi.jyu.fi/kotka/servlet/

list-archive/muksis/

• Mailing lists: muksis@korppi.jyu.fi

• Room: AgC 225.3 / 014-2604971
• SVN: svn+ssh://svn.cc.jyu.fi/srv/svn/muksis/
• Trac: https://trac.cc.jyu.fi/projects/muksis/wiki
• WWW: http://sovellusprojektit.it.jyu.fi/muksis/

iii

Muksis project Project report 1.0 Public

iv

Public Project report 1.0 Muksis project

Contents

1 Introduction 1

2 Terms 2

3 Accomplishments 4
3.1 Software . 4
3.2 Documentation . 5
3.3 Learning goals . 6

4 Resources 7
4.1 Resource constraints . 7
4.2 Physical resources . 7
4.3 Training . 8
4.4 Supervision . 8

5 Process and schedule 9
5.1 Process model . 9
5.2 Schedule . 9

5.2.1 Iteration schedules . 9
5.2.2 Iteration steps . 10

5.3 Weekly working hours . 10
5.3.1 Richard Domander . 11
5.3.2 Teemu Nisu . 12
5.3.3 Tommi Teistelä . 13
5.3.4 Tuomas Mäenpää . 14

6 Tasks, workload and division of labour 17
6.1 Division of labour by phases . 17

6.1.1 Richard Domander . 18
6.1.2 Teemu Nisu . 19
6.1.3 Tommi Teistelä . 20
6.1.4 Tuomas Mäenpää . 21

7 Management methods 22
7.1 Meetings . 22
7.2 Communication . 22

v

Muksis project Project report 1.0 Public

7.3 Task management . 23
7.4 Time logging . 23
7.5 Responsibilities . 24
7.6 Documentation . 24
7.7 Version management . 24

8 Risks 26
8.1 Client’s availability . 26
8.2 Supervision . 27
8.3 Inability to participate . 27
8.4 Human relationships . 27
8.5 Inexperience . 27
8.6 Programming skills . 28
8.7 Scheduling . 28
8.8 Communication . 28
8.9 Language . 28
8.10 MPlayer development . 28
8.11 Working environment . 29
8.12 Complexity . 29

9 Personal experiences 30
9.1 Richard Domander . 30
9.2 Teemu Nisu . 31
9.3 Tommi Teistelä . 31
9.4 Tuomas Mäenpää . 32

10 Bibliography 34

vi

Public Project report 1.0 Muksis project

1 Introduction

Muksis was a student software project at the Department of Mathematical Infor-
mation Technology, University of Jyväskylä. During the fall of 2008 the project de-
signed and implemented new features to the open source media player application
MPlayer [1]. The new features were black frame detection for skipping commercials
in recorded video file, support for DVB subtitles, seek function to skip commer-
cials based on black frame locations, and audio filter for compressing and normaliz-
ing the audio signal. The project team decided to improve similar existing features
found in patches written by project client. The software was made for Matthieu
Weber who is a senior assistant in the Department of Mathematical Information
Technology at the University of Jyväskylä.

The project was performed in a team of four students: Richard Domander, Tuomas
Mäenpää, Teemu Nisu and Tommi Teistelä. Tuomas Mäenpää acted as the project
manager. Ville Isomöttönen worked as a supervisor for the project. There was no
technical supervisor in this project.

The project was concluded in six iterations. The first iteration was called the 0-
iteration and began in 11.9.2008. Rest of the remaining iterations completed approx-
imately in two weeks.

This is the project report document of the software project Muksis. The document
describes the progress of the project and analyzes how well the project plan was
followed during the project. It focuses on the main objectives of the project and ex-
plains how well these were accomplished. The document begins with explaining
the main terms in Chapter 2. Accomplishments of the project are listed in Chapter
3 and the resources used during the project are described in Chapter 4. After these
the process and schedule are described in Chapter 5 and then the tasks, workload
and the division of labour are explained in Chapter 6. In the second half of the doc-
ument the management methods are described in Chapter 7and risks are analyzed
in Chapter 8. Finally the personal experiences of the project members are revealed
in Chapter 9.

1(34)

Muksis project Project report 1.0 Public

2 Terms

Following terms appear in this document:

Agile software development a software development process. Agile methods
emphasize real-time communication and work-
ing software as the primary measure of progress
using iterative development.

Software project course at The Department of Mathematical Infor-
mation Technology.

C a general-purpose programming language.

Demuxing means the same as demultiplexing, the opposite
of multiplexing.

DVB Digital Video Broadcasting, a set of open stan-
dards for digital television. Defines various de-
tails about the physical and data link layer-level
transmission of data, refers to existing MPEG stan-
dards for the actual format specifications where
possible. The data stream itself is an MPEG-2
Transport Stream with some DVB-specific con-
straints and may contain multiple channels.

IDE integrated development environment is an ap-
plication that provides tools for software devel-
opment.

Iterative development technique of developing and delivering incremen-
tal components of business functionality. A sin-
gle iteration results in one or more bite-sized but
complete packages of project work that can per-
form some tangible business function. Multiple
iterations recurse to create a fully integrated prod-
uct.

MPEG The Motion Picture Experts Group, a working
group of ISO/IEC. Also a common name for cer-
tain standards created by them.

2(34)

Public Project report 1.0 Muksis project

MPEG-2 The MPEG standard specifying video, audio and
related format specifications, primarily used for
DVDs and digital television broadcasting.

MPEG TS is a MPEG transport stream. It is a communica-
tion protocol for audio, video and data. It’s goal
is to allow multiplexing of digital video and au-
dio and to synchronize the output.

Multiplexing a process where multiple digital streams are com-
bined into one stream over a shared medium.

patch is a small piece of software designed to fix prob-
lems with or update a computer program. This
includes fixing bugs, replacing or adding features
and improving the usability or performance.

OSS open source software, a computer software, which
source code is made available under a copyright
license or arrangement. This permits users to
use, change, and improve the software, and to
redistribute it in modified or unmodified form.

Subversion is a free version control system. It is used to main-
tain current and historical versions of files such
as source code.

SVN is an abbreviation for Subversion.

3(34)

Muksis project Project report 1.0 Public

3 Accomplishments

This chapter analyzes the accomplishments the project Muksis achieved during the
project.

3.1 Software

After the team finished the initial research of the MPlayer codebase, working pro-
totypes of the planned features were generally finished quickly thanks to the docu-
mentation, old code and other advice provided by Matthieu Weber. The lack of in-
ternal documentation, comments and proper specification of features in MPlayer’s
code (along with the team’s inexperience with it) kept providing plenty of surprises
until the end of the project, though.

The black frame detection feature was the first one completed as it was implemented
as a video filter, separated from most other code, and the interfaces it depended on
were virtually unchanged between versions. The team had also looked at using
the existing black frame detection filter from MPlayer’s newer versions, but it was
intended for a different usage scenario involving external tools, and it proved easier
to simply port the feature from Weber’s old code. The resulting implementation was
found to behave in the same way as the old one.

The subtitling and seeking features proved more tricky as both involved consider-
able interaction with existing code that was difficult to understand due to reliance
on “magic numbers” and other code wizardry. The major refactoring the MPlayer
code has been going through on its way towards a “1.0” release added a layer of
difficulty to comparing the source code of different versions to isolate changes in be-
haviour. MPlayer on its own never had working support for the subtitling formats
commonly featured with MPEG Transport Streams, and it seems that the MPEG TS
demuxer’s support for subtitles had been subtly broken (at least for our purposes)
in some version preceding our target without anyone noticing, much to the team’s
confusion. Both features were eventually gotten to work.

One additional feature that was thought up during a meeting was audio filtering
suitable for a “quiet listening” scenario in a home theatre environment. This was
successfully implemented by replicating a typical DVD player’s dynamic compres-
sion filter and chaining it together with MPlayer’s own audio normalization filter-

4(34)

Public Project report 1.0 Muksis project

ing feature, delivering a fairly constant volume level free of sudden peaks that might
prove unpopular with family members.

3.2 Documentation

Besides the software itself, the project produced a number of documents related to
its development. The documents were written in English, except the ones created
for the peripheral course, which were in Finnish. The documents were collected into
two folders: One for reference in the university’s future software projects and one
for the customer. The software patches and the documentation were also burned
onto CD-Rs: Two for the project folders, one for each project member and one for
the department’s archive.

The documents that were completed during the project (in chronological order) are:

• GPL agreement contract on licensing the source code and the software under
General Public License.

• Project plan, which introduced the project, its background and goals, and de-
scribed its overall management; the schedule, the tasks, how they were di-
vided and what risks the project faced.

• Application report, which explained the overall structure of the MPlayer soft-
ware.

• Test plan & report shortly outlined the testing strategy, the test cases, and
reported on the test results.

• Project presentation reports (esittelyraportit) for the peripheral course.

• Project report is this document and was written at the end of the project to
analyze and summarize the project progress.

• Meeting agendas, minutes and related materials.

• Source code a print out of the code that the project team wrote.

• Project’s e-mail list archive in printed form.

The need for this much documentation was questioned occasionally by the project
members, but all project goals that were set for the documentation were met.

5(34)

Muksis project Project report 1.0 Public

3.3 Learning goals

In general, the team members were satisfied with how their learning goals men-
tioned in the project plan were met. Plenty of other things besides those were
learned too as working on a project like this as a team was a first for most of the
team – everyone became quite familiar with LATEX and its quirks, too. Tuomas would
have liked to learn more C language, but was happy with the experience he got from
being a project manager.

6(34)

Public Project report 1.0 Muksis project

4 Resources

This chapter describes the resources and how the team utilized them. The training
and supervision that were arranged by the Department of MIT are also described
here.

4.1 Resource constraints

For completing the software project course, the students are expected to work be-
tween 270 and 400 hours for the project (10-15 credits for the course) [2]. The team
completed the project with in approximately 1180 man-hours. This grants the stu-
dents 10 credits each. The team members didn’t have many other courses simulta-
neously, so finding time for the project wasn’t really a problem. Sometimes though
it seemed that preparing for an exam took so much time that some tasks were not
completed as planned.

4.2 Physical resources

The project team used the room AgC225.3 inside the project premises AgC223.1. The
room was equipped with four computers (one for each member), office supplies and
white boards. The computers were generally found fast enough and useful. Since
installing programs was prohibited, the team requested installations from MIT’s PC
support. The team chose to request Linux for all the computers, but it was soon
discovered that the Excel document that were used to log working time didn’t work
under OpenOffice.org and one computer was changed back to work as a Windows
machine. The team chose to use the Code::Blocks IDE as their main tool for pro-
gramming, but compiling MPlayer with it was difficult and eventually it was only
used as a favoured editor. The main documents were written with Texmaker, a free
cross-platform LATEX editor and with Microsoft Excel.

The printer in the project premises was generally used weekly and found essential,
but the copier of the department of MIT was used only a few times. A small library
of technical books was available, but since most of the technical documents were
provided by the client, the library wasn’t needed. The other results found from
the project folders in the project premises were very useful, especially during the

7(34)

Muksis project Project report 1.0 Public

beginning of the project. The team could also get a projector and a digital audio
recorder for the meetings. The projector was used in every meeting, and it was
useful during the first presentation for demonstrating the implemented features, but
the team didn’t see any need for the audio recorder. The project premises could also
be reserved for the meetings and every official project meeting was held in there.

4.3 Training

During the project the team members attended a peripheral course and got training
for various subjects:

• Project leading and management

• Revision Control

• Usability

• Copyrights

• Presentations

The lectures were generally found interesting, though some of the sessions felt quite
long, which made it difficult to concentrate on them. The team found the project
leading and revision control lectures very useful, but there was little use for the
information given in the usability lectures as MPlayer’s usability was hardly the
focus of the project.

4.4 Supervision

Ville Isomöttönen from the Department of the Mathematical Information Technol-
ogy acted as a supervisor in charge for the project. He supervised all aspects of the
project and especially its planning, process, management, and general state. He also
acted as a sort of mediator between the client and the team. There was no official
technical supervisor for project, but since the client had implemented the features
earlier and was familiar with the code the team could ask him for instructions.

8(34)

Public Project report 1.0 Muksis project

5 Process and schedule

This chapter explains the process and schedule that were used in the project Muksis.
It also describes how much time the project members spent on working every week.

5.1 Process model

The project was carried out using an agile process model that used multiple sequen-
tial two-week iterations. The beginning phase was called the 0-iteration. The topics
of the project, workspace and personnel were introduced during it. The 0-iteration
acted as a start-up and orientation step with no software implementation. After this,
the iterations were performed in two-week cycles.

In each iteration the product was built further from the previous iteration. This
ensured that the project was progressing steadily, and the participants got to inspect
the results as early as possible. Short iteration intervals also helped the team to react
faster to changes in project flow.

5.2 Schedule

Because of the Agile process model, a different timetable was planned for every
iteration. At first only an overview for each iteration was written in the start-up
phase. The final schedule for the next iteration was planned at the end of each two-
week cycle and presented during the meeting.

5.2.1 Iteration schedules

Table 5.1 shows the main events of each iteration. The project encompassed seven
two-week iterations, which made 14 weeks in total. There were no major changes in
the iteration list comparing it to the one in the project plan until iteration 5, when the
project had to add one extra iteration to be able to acceptably complete the project.
The reason for this was an error with the DVB subtitles that was found relatively late
in project. The bug was especially hard to trace since it seemed to appear almost ran-
domly. The bug affected DVD subtitles so that there was an annoying delay in some

9(34)

Muksis project Project report 1.0 Public

files. Richard solved the bug just before Christmas with a hint from the client. Also
some of the iteration interval dates had to be changed, but every iteration completed
in approximately two weeks.

5.2.2 Iteration steps

All tasks were decided iteration-by-iteration. In the meeting at the end of the itera-
tion the project team reviewed the priorities of the tasks and requirements with the
customer and decided which tasks the team would do next. After the meeting, in the
internal meeting of project team, the project members were assigned new tasks and
the time usage estimated. The whiteboard was used for recording progress during
iteration. Previous schedules were used to more precisely evaluate this. If it seemed
like some tasks used more time than planned in more than one previous schedules
then the planned working time was increased. The same way the planned working
time was shortened if it seemed like some tasks used less time than planned. Most
approximations for the implemention times were tweaked the same way. The soft-
ware production style varied a bit by the member of project and by the feature being
implemented. Tommi seemed to use the typical typical design-implement-test se-
quence. Teemu and Richard commented that their style was more like a random
code hacking and testing. The complexity of the MPlayer’s code was clearly one
reason for experimenting to be able to see what the code actually does.

5.3 Weekly working hours

The whole team’s working hours were divided as the Figure 5.1 shows.

Soon after the subject of the project was introduced, the project team began to re-
search the material available. The members could easily spend time on project since
they didn’t have many other on-going courses. The team progressed fast and the
software seemed to work fine. This might be one reason why the during the middle
of the project the working hours are dropping repeatedly. However when the testing
phase began it revealed all the bugs that the team had missed. This again increased
the time spent on the project. The reason why there are so few hours in week 48
is that most of the members attended an intensive course that was lectured in that
week. Maybe if the bug testing would have started earlier we could have ended
the project with more working hours and the graph would be smoother. Since the

10(34)

Public Project report 1.0 Muksis project

Figure 5.1: The project team’s weekly working hours.

project started during the fall 2008 the weeks 2 and 3 in this graph present the two
last working weeks in 2009 after the Christmas break.

5.3.1 Richard Domander

Richard’s working hours were divided as Figure 5.2 shows.

Richard’s weekly hours rose fast and he spent lots of time working in the project
room researching the code and MPEG technology. His working hours continued
steadily until the middle end of the project when he had to study for a few exams.
At the end of the project his working time jumped back to near 30 hours per week
since he had to write the application report and fix bugs. Since the project started
during the fall 2008 the weeks 2 and 3 in this graph present the two last working
weeks in 2009 after the Christmas break.

11(34)

Muksis project Project report 1.0 Public

Figure 5.2: Richard’s weekly working hours.

5.3.2 Teemu Nisu

Teemu’s working hours were divided as Figure 5.3 shows.

Teemu’s working hours were also rising fast at the beginning. He spent much time
on researching and testing the code. He also wrote the testing plan and report dur-
ing the second half of the project. Since the project started during the fall 2008 the
weeks 2 and 3 in this graph present the two last working weeks in 2009 after the
Christmas break.

12(34)

Public Project report 1.0 Muksis project

Figure 5.3: Teemu’s weekly working hours.

5.3.3 Tommi Teistelä

Tommi’s working hours were divided as Figure 5.4 shows.

Tommi’s hours were relatively steady at the beginning of the project. There were a
few spikes due to his working habits, however. At the end of the project he spent
much more time on the project to even out his working hours with other members.
Since the project started during the fall 2008 the weeks 2 and 3 in this graph present
the two last working weeks in 2009 after the Christmas break.

13(34)

Muksis project Project report 1.0 Public

Figure 5.4: Tommi’s weekly working hours.

5.3.4 Tuomas Mäenpää

Tuomas’s working hours were divided as Figure 5.5 shows.

The weekly hours of Tuomas climbed fast but after that there was a steady down-
ward trend until the middle of the project. Since the features that were going to be
implemented were assigned to other members, he didn’t have to work on coding
but helped with testing the product. Then at the end of the project the project report
required more work. Since the project started during the fall 2008 the weeks 2 and 3
in this graph present the two last working weeks in 2009 after the Christmas break.

14(34)

Public Project report 1.0 Muksis project

Figure 5.5: Tuomas’s weekly working hours.

15(34)

Muksis project Project report 1.0 Public

Table 5.1: Contents of the iterations.

Iteration Duration Interval Most important tasks

0 2 weeks 17.9.2008 -
1.10.2008

Introduction to the project subject, research
of specs and code and beginning to write
the project plan.

1 2 weeks 2.10.2008 -
17.10.2008

Black frame detection’s implementation,
completing project plan, research of seek
function and dividing it’s implementation
to tasks.

2 2 weeks 18.10.2008 -
29.10.2008

Seek function’s implementation and start-
ing to implement DVB subtitles, writing
application plan. DVB subtitle implemen-
tation.

3 2 weeks 30.10.2008 -
12.11.2008

Testing the implemented features and writ-
ing test plan & report and starting to write
the application report.

4 2 weeks 13.11.2008 -
1.12.2008

Completing the application report, test-
ing the features in other environments and
versions of MPlayer, project report’s main
chapters

5 2 weeks 2.12.2008 -
17.12.2008

Fixing severe bugs, making corrections to
application plan and writing the rest of the
project report.

6 2 weeks 18.12.2008 -
10.12.2008
and 7.1.2009
- 16.1.2009

Making final corrections to the project re-
port, fixing all what is possible to fix,
preparing the final patch and ending the
project.

16(34)

Public Project report 1.0 Muksis project

6 Tasks, workload and division of labour

At first the project was divided into different phases or steps. These phases were: pe-
ripheral course, project management, meetings, research, implementation and test-
ing. To ease management, these phases were divided further into different respon-
sibilities. These responsibilities were taken into account in every iteration when the
tasks were assigned. The responsibilities also affected straight to the total working
time of a member. Some of the features were more difficult to implement and had
more bugs than others so they also needed more time.

6.1 Division of labour by phases

The overall division of labour is presented in the Figure 6.1.

Figure 6.1: The division of labour in project by phases.

As Figure 6.1 shows, most of the time in project was spent on project managing and
research. However, all the documents that were written were logged as project man-
agement and this added many hours to the phase. Researching the MPlayer code

17(34)

Muksis project Project report 1.0 Public

was essential for understanding how to implement new features for the software.
Studying the technologies involved in presenting MPEG video also needed lots of
time. Agile software development also added some time to project management,
since every iteration is planned separately during the project.

6.1.1 Richard Domander

Richard’s division of labour is presented in the Figure 6.2.

Figure 6.2: The time used for phases by Richard Domander

Richard used time quite evenly between different phases. At first he did research
and implementation. He was also responsible for writing the application plan and
report, which took quite a bit of time near the end of the project. Richard worked
on the code for the DVB subtitles and black frame detection. Since code for DVB
subtitles had most difficult bugs and Richard was responsible for fixing them, his
working hours dilated towards the end of the project.

18(34)

Public Project report 1.0 Muksis project

6.1.2 Teemu Nisu

Teemu’s division of labour is presented in the Figure 6.3.

Figure 6.3: The time used for phases by Teemu Nisu.

Teemu wrote the testing plan & report and the Risks chapter for the project plan.
This added time to his project managing phase. He also researched the code at the
beginning of the project and did most of the testing.

19(34)

Muksis project Project report 1.0 Public

6.1.3 Tommi Teistelä

Tommi’s division of labour is presented in the Figure 6.4.

Figure 6.4: The time used for phases by Tommi Teistelä.

Tommi implemented the new seek function for MPlayer and later the audio filter.
He also wrote chapters for the application report and for the project report, and
was responsible for the team’s presentations. He also researched the black frame
detection code at the start of the project.

20(34)

Public Project report 1.0 Muksis project

6.1.4 Tuomas Mäenpää

Tuomas’s division of labour is presented in the Figure 6.5.

Figure 6.5: The time used for phases by Tuomas Mäenpää.

As the project manager, Tuomas mostly focused on tasks that involved project man-
agement. During iterations 0, 1 and 2 he wrote the project plan and researched the
specs and code. At the end of the project he wrote the project report. Because there
were so few features to be implemented he basically did no real coding at all.

21(34)

Muksis project Project report 1.0 Public

7 Management methods

This chapter describes management methods of project Muksis.

7.1 Meetings

An official meeting was held between every iteration with all the stakeholders of
project Muksis. Before the meeting the project team planned and prepared the ma-
terial, which included a proposal on the next iteration’s requirements and explained
how the working hours were distributed in the previous iteration. In the beginning
of a meeting the previous iteration was reviewed, and the tasks for the next iter-
ation were decided. The chairman of the meeting brought and set up the needed
equipment to the meeting room, and opened the session. The secretary prepared
the agenda of the meeting, and took notes during the session. After the meeting sec-
retary also wrote a report called minutes, which reviewed the main items discussed
and any decisions that were made. All material was to be delivered two work days
before the meeting, the agenda one day before and the minutes a maximum of three
days after the meeting. The meetings were found really useful since the client had
so much knowledge of the MPlayer and the team could easily ask questions about
the code.

7.2 Communication

Communication was maintained with the e-mail list muksis@korppi.jyu.fi. In
general it was only used to inform about the agenda and the minutes of the meetings
and to send the hyper links to the material for all participants. Unofficial meetings
were held at least once per week if there were no official meetings. These meetings
were also found useful and more relaxed than the official meetings. The team could
report the status and to plan what to do next without thinking too much about the
agenda.

At the beginning of the project the supervisors had also delivered the contact in-
formation to every participant. Tuomas found phone numbers very useful since
sometimes he had to get response fast for some issues. Most of the team’s inter-
nal communication was maintained with informal meetings at the team’s office. An

22(34)

Public Project report 1.0 Muksis project

e-mail list muksismafia.group@korppi.jyu.fi was also established and used
for internal communication between the project’s developers. Overall it was not
used as much as the list muksis@korppi.jyu.fi but it was useful for some small
internal messages and we could use Finnish.

The project manager had the responsibility to act as a mediator between the team
and the rest of the participants and to maintain communications within the team.
Most of the communication outside the meetings with the client was handled with
direct e-mails and with the project muksis’s e-mail list. The project members could
have used more direct live communication between with the client. This probably
would have helped the team to solve some of the bugs faster.

7.3 Task management

After meetings the team planned the next iteration together by dividing tasks for
each member using the project room’s whiteboard. These tasks were usually de-
cided in the meetings, but details were often worked out on the whiteboard. The
description of the task and the estimated time it would take, along with the team
members who would participate in it were each written on their own columns on
the whiteboard. During the iteration the team attempted to estimate each task’s
progress with percentages written to the whiteboard. This could have be done more
accurately. If the team would have updated the whiteboard more often then perhaps
the total working hours between team members would differ less.

7.4 Time logging

The time usage of each iteration was logged into an Excel document. At the begin-
ning the document was edited on a Linux machine, but the macros of graphs didn’t
work properly. The team decided that the project manager would log all working
hours with the windows machine he used in the team’s room and the other members
would send their working hours to him. The working hours of each team member
were written to the document’s tables, grouping them by tasks. The time used in
the peripheral course was also logged using the same Excel table. In the beginning
of the iteration, the project team evaluated the estimated time needed to accomplish
each task. This required the team to have internal meetings weekly to divide tasks

23(34)

Muksis project Project report 1.0 Public

and to estimate the time requirements for them. In the end of the iteration the time
log was used to analyze how well the plan held during the iteration.

7.5 Responsibilities

To make the project work smoother, all work was divided into sets of responsi-
bilities. Each team member was assigned a primary responsibility. The peripheral
course’s lectures, group works and presentations were handled as a separate respon-
sibility belonging to all team members. Each person was in charge of monitoring the
progression of his responsibility but didn’t necessarily handle it all by himself. The
division of responsibilities worked quite well, but it wasn’t followed strictly. If it
looked like that some important task was going to take more time from the member,
then someone else was usually arranged for the job. However there was no need for
any major changes in responsibilities.

7.6 Documentation

The project’s documents were processed with the LATEX typesetting software us-
ing the department’s document templates and named using the format document
_name-version.pdf. All documents were published in PDF format and stored in
the public hard drive mount created on the network of the University of Jyväskylä,
and are available for all. At the end of the project these files will be burned on a CD-
R disc and placed into the project folder. In addition, meeting agendas and minutes
are were handled with the project management application Trac, where they were
easily editable and accessible to all participants. All complete plans and reports
were signed by the customer, the project manager and the supervisor.

7.7 Version management

The team used Subversion for version management. Every official document which
had a version number was named using the format
document_name-a.b, where a is the major number of version with only values
of 0 or 1. b is the minor number of version and is an integer starting from 1. For

24(34)

Public Project report 1.0 Muksis project

example after version number 0.9 comes 0.10 not 1.0. The number 1.0 indicates that
the document is complete. At the beginning the SVN was not used and the mem-
bers experimented with the source code placed on their computers. Soon after the
lectures of version management all members agreed to begin using SVN and all the
code was placed there. All Excel documents and TeX files were also placed to the
SVN. The SVN clearly made the implementation smoother and after Teemu noticed
the feature to create patches straight from the SVN it made our work even faster.

25(34)

Muksis project Project report 1.0 Public

8 Risks

Unexpected events during the process could have prevented it from succeeding.
This chapter goes through the risks that were estimated in the project plan and an-
alyzes if they came true and how they affected the project. The risks are defined
in Table 8.1. The probabilities and effects of each risk are evaluated on a scale of
low-intermediate-high.

Table 8.1: Risks of the project.

Risk Probability Estimated effect Realized effect Came true

Client’s availability Low High - No
Supervision Intermediate Intermediate - No
Inability to participate Low High Low Yes
Human relationships Low High - No
Inexperience High Intermediate Intermediate Yes
Programming skills Low High - No
Scheduling Intermediate Intermediate - No
Communication Intermediate High Low Yes
Language Intermediate Low - No
MPlayer development Low Intermediate - No
Working environment High Intermediate Low Yes
Complexity High Intermediate High Yes

8.1 Client’s availability

The client was available the whole time during the project. The team communicated
with him by e-mail and the state of the project was discussed in every meeting.

26(34)

Public Project report 1.0 Muksis project

8.2 Supervision

The supervisor provided useful information about managing the project and was
available all the time. In the end the project didn’t get a technical supervisor, but
since the client had much insight about the subject there wasn’t really any need for
one.

8.3 Inability to participate

On some occasions the members weren’t all able to participate as planned, but this
had little or no impact to the project. Near the end of the project there was an inten-
sive course about 3D game programming and the members attended it. Just before
the intensive course some bigger bugs had emerged, but the course didn’t seem to
interfere with the project’s progress. Since the bug was found just before the course
we did not have much time to react. It just showed as an extra work in the next
week.

8.4 Human relationships

The group members got along well and there weren’t any big issues, although the
team could have spent more time together in the project room.

8.5 Inexperience

The project would probably have gone smoother if the members had more expe-
rience. For the project manager planning accurate working hours felt a bit hard
at first. Also writing the long documents in foreign language took longer than ex-
pected. Tuomas tried to react this by starting writing the project report sooner but
it still took longer than he planned. Since the source code was messy and large, it
was hard task for relatively inexperienced coder to know what to search and where.
This was reacted by adding more hours to the schedule’s plan. Especially with the
DVB subtitle’s delay bug it almost seemed like we might not repair it in time, but it
got handled eventually.

27(34)

Muksis project Project report 1.0 Public

8.6 Programming skills

The team members had at least basic knowledge of writing C. This seemed to be
enough, since there weren’t any real deadlocks during the iterations.

8.7 Scheduling

Some tasks like writing the plans, reports and repairing seek code and DVB sub-
title’s delay bug were a bit late, but the overall impression was that the schedules
held quite well.

8.8 Communication

There were some small issues in communication, especially at the beginning of the
course. The team could have worked more efficiently if they would have commu-
nicated more with the client. However the impact of these problems was minor.
The team reacted to the lack of internal communication by creating the muksismafia
mailing list, so we could communicate in our main language.

8.9 Language

Writing the documents and communicating in meetings in a foreign language was
a challenge. Still there weren’t any real cases where the language would have nega-
tively affected the progress of the project.

8.10 MPlayer development

The members estimated that the MPlayer could evolve so much during the project
that the implemented features wouldn’t work in the newest version. At least before
the December most of the code members had written worked by just merging it to
the MPlayer’s SVN.

28(34)

Public Project report 1.0 Muksis project

8.11 Working environment

Some of the application tools installed on the computers didn’t work as expected.
This created some extra tasks trying to solve the problems and finding alternative
ways to do the work. The team tried to compile the software with the Code::Blocks
IDE, but they soon found out it is too difficult. After noticing this the IDE was only
used as an text editor since it had a great set of tools such as highlighting for writing
the code. The Linux machines used Fedora as their OS. For some reason the Gnome
desktop did not work as it should have and stressed the team members.

8.12 Complexity

The MPlayer is complex and large software. To make things worse, the source code
in general is quite messy. The complexity seemed sometimes overwhelming and
the code needed lots of experimenting before the team members could understand
it. The team reacted to the complexity by studying all the technical material the
client delivered to them. Over the time when the MPlayer felt more familiar the
implementation got also easier and project resources allowed to fix the bugs.

29(34)

Muksis project Project report 1.0 Public

9 Personal experiences

9.1 Richard Domander

When we started the project I didn’t doubt its chances of success as much as I did
my own. I had little experience of larger projects before delving into the code of
MPlayer. I knew a bit of C, but Linux environment was unfamiliar to me. Surpris-
ingly, with hard effort I began to understand how MPlayer functions. After dozens
of hours spent researching, I understood the source code enough to know which
parts we needed to alter to implement the required features. I also knew how to
improve the code in Weber’s old patch.

New bugs (see application report) kept showing up especially with DVB subtitle
support, which was my main responsibility. Even though it was frustrating at times,
overall I was glad that I could concentrate on implementation. Solving a bug often
seemed an insurmountable task at first, because I didn’t have any idea what to do,
but with time I managed to solve it. My coding could be described as “trial & er-
ror hacking”. I just bang the keyboard, and change things guided by my magical
techno intuition, without ever truly understanding what I am doing. Often I began
to understand the solution to the problem only after I was finished. This kind of
implementation is rather slow. I should begin to think more before acting, to plan
my coding. I should also be less stubborn, and admit defeat more readily when it’s
clear my initial idea won’t work. Note to future developers of MPlayer: you can’t
ever research the code enough, but some research is best left to the implementation
phase when it’s clearer what you need to change.

During the project I started to get annoyed by the amount of “meta work”. I felt too
much time was spent writing various documents and sitting in meetings in relation
to time spent for actual coding. But I know that the main purpose of the software
project is education, so it’s understandable that some things are done just for the
sake of doing, and thus learning them. At least my English got a lot more fluent
because I had to write so much stuff in it. I learned something about process and
project management, but I feel the process could have been even more “Agile”, i.e.
less management overhead – our project leader didn’t get to code at all! But I know
our project was a special case, which was difficult to fit into the existing process &
project models.

30(34)

Public Project report 1.0 Muksis project

9.2 Teemu Nisu

When I saw the subject of our project for the first time, I got both excited and wor-
ried. The subject was very interesting but on the other hand I had no idea about
the implementation. I had some experience with C++, but something as huge as
MPlayer coded with plain C was totally new to me. In the beginning I had to use
a lot of time for researching MPlayer’s source code to get some kind of grip of it.
The old code provided by Matthieu helped a lot in finding the key parts to focus on.
Most of the code also fit quite well into the newer versions of MPlayer giving us a
good basis for development. After we got the features working to some extent, we
were relieved and felt that we might even finish the project early. So we eased off a
bit. Then the testing phase came in and we realized that the project was not so close
to completion after all. Since the reporting phase was also closing in, we had quite
a busy time before Christmas.

It became clear from the start that things like planning, documentation and having
meetings would actually take more time than programming. It was partially caused
by the nature of the project, since there was not so much actual programming re-
quired. Implementing the features was more about porting code and experimenting
with things rather than writing things from scratch.

What I expected from this course was getting an overall impression of software
projects in practice. So far it has met my expectations quite well. Despite the fact
that the subject of the project was quite special, it has given me a lot of valuable ex-
perience that will surely be useful in the future. Especially things like presentations
and meetings cannot be learned by reading books or listening to lectures.

9.3 Tommi Teistelä

When I found out that the original project planned for us had been pulled out at the
last minute and we would be getting a new one as soon as it could be arranged, I
was a bit worried we’d end up doing some rushed, poorly thought out project that
got the “second place” for a very good reason. Now, I can certainly tell why the one
we got had been waiting on the “second place” for a while, but I’m actually glad we
got to work on this – I’d wanted to look at a free software project for some time, but
hadn’t yet found a good reason to make me pick one and focus on it over others.
There are a lot of them that could use some improving...

31(34)

Muksis project Project report 1.0 Public

I mainly worked on the MPEG TS seeking and audio filtering features, which were
very different from each other. With the MPEG TS seeking I was tweaking the inter-
nals of a completely undocumented software component to do something it wasn’t
built to do, while the audio filtering was mostly separate from any existing code
and easy to implement from scratch. The audio filter took me about two evenings,
while the seeking feature kept me busy through several project iterations figuring
out which “feature” of the code I hadn’t touched I’d triggered this time, which vari-
ables actually held meaningful information at any given point, etc. I don’t know if
I’ve learned anything about the C language I didn’t already know, but I definitely
have gained a new appreciation for proper documentation and to the way access to
structured data tends to work in more object-oriented languages.

Like Richard, I was a bit surprised by the overall amount of time we spent working
on the project’s management – meetings, writing reports and so on, but it was just
another aspect of the course and one topic I certainly learned something new about.
As much as I’ve usually disliked writing stuff over coding, my experiences with
working on the MPlayer code led me to value the occasions when I just needed to
write plain (English) text. As usual, I probably spent at least as much time worrying
about the quality of my work as writing it, but I’ve come to accept that as part of my
creative process.

9.4 Tuomas Mäenpää

As a whole the course felt interesting and challenging. I didn’t have any real expe-
rience of leading a project before the course and I had some doubts about my skills
for this. I knew at least the basics of the C language but I was kind of expecting to
do a web based application before the subject was revealed. I have some real life
experience of working in large scale software project so I had some insight what
to expect. The Agile process model seemed quite interesting and I believe I have
gained much valuable experience during the software project. I have always liked
practical or down-to-earth style of working, so this course felt especially refreshing
after all the theoretical courses.

In the beginning of the project there were clearly three key features that our team
was going to implement. This situation let me assign these features to other mem-
bers and concentrate on planning the project and writing the project plan. I prob-
ably should have tried to arrange even a bit of coding work for myself since later

32(34)

Public Project report 1.0 Muksis project

the work had clearly been divided for the other members. After this it soon felt
like there was no need to dive into the source code since the features progressed
smoothly. I think this in a way or another made us shift our working pace a gear
down. After we began testing we realized how much work there still was and be-
cause the end of the project approached fast we had to work faster again.

33(34)

Muksis project Project report 1.0 Public

10 Bibliography

[1] MPlayer documentation; Appendix D. History, referenced 10.10.2008
http://www.mplayerhq.hu/DOCS/HTML/en/history.html

[2] University of Jyväskylä; KIEPO termipankki, referenced 29.9.2008
http://www.jyu.fi/hum/laitokset/solki/tutkimus/

projektit/kiepo/termipankki/opintopiste/

?searchterm=opintopiste

34(34)

	Introduction
	Terms
	Accomplishments
	Software
	Documentation
	Learning goals

	Resources
	Resource constraints
	Physical resources
	Training
	Supervision

	Process and schedule
	Process model
	Schedule
	Iteration schedules
	Iteration steps

	Weekly working hours
	Richard Domander
	Teemu Nisu
	Tommi Teistelä
	Tuomas Mäenpää

	Tasks, workload and division of labour
	Division of labour by phases
	Richard Domander
	Teemu Nisu
	Tommi Teistelä
	Tuomas Mäenpää

	Management methods
	Meetings
	Communication
	Task management
	Time logging
	Responsibilities
	Documentation
	Version management

	Risks
	Client's availability
	Supervision
	Inability to participate
	Human relationships
	Inexperience
	Programming skills
	Scheduling
	Communication
	Language
	MPlayer development
	Working environment
	Complexity

	Personal experiences
	Richard Domander
	Teemu Nisu
	Tommi Teistelä
	Tuomas Mäenpää

	Bibliography

