i
Application Plan

NEXUS
Software Project

Pasi Aho

Henrik Härkönen

Miikka Lahti

Minna Rajala

Software Report

1.6.2002

University of Jyväskylä

Department of Mathematical Information Technology

 Abstract

The Nexus project implemented distributional software, which calculates and visualizes three-dimensional fractals. The project also implemented a sniffer to gather information about the cost efficiency of the distribution. This software report considers the implementation of the Fractal Calculator system developed by the Nexus project.

Contents

11
Introduction

32
The structure of the system

32.1
The Globus resource management architecture

42.2
The components of the GRAM

63
The classes that are used for distribution

63.1
The classes implemented by the project

63.2
The classes used from the Java Cog library

74
The classes of the software

74.1
ApplicationUI

74.2
FrameUI

94.3
DialogFractals

94.4
DialogProperties

104.5
DialogComputers

114.6
ComputerTab

134.7
DialogOptions

134.8
DialogAbout

134.9
GlobusClient

154.10
JobListener

154.11
Parser

164.12
DBVisualizer

174.13
DBRenderer

184.14
MyTimer

194.15
FrameSniffer

204.16
NwsClient

214.17
NwsHandler

214.18
NwsServer

224.19
NwsData

235
The user interface

235.1
The main window of the user interface

255.2
The number of the fractals dialog

255.3
The fractal properties dialog

285.4
Dialog computers

295.5
The measurement results

306
The tests and measurements

306.1
Testing the software

306.2
Measuring the cost efficiency of distribution

327
The deficiencies of the software

327.1
The limitations of the software

337.2
The solved problems

348
The ideas for further development

359
Conclusions

1 Introduction

Nexus was a student software project carried out in the University of Jyväskylä during the spring 2002. The project implemented a system of a distributed computational Grid for VTT Information Technology. The system made use of Grid technology by using Globus Toolkit available freely from the Globus organization.

The software project collected information about distribution and explored when it is efficient to use distribution in computational tasks. The developed software calculates and visualizes three-dimensional fractals using distributed computing. A monitor for analysing the computational results with different sets of computers and data amounts was also made.

The software consists of the following components: the client part, the distributional calculation and the sniffer. The client part includes the user interface and the fractal visualization. The user is able to define parameters for a fractal and the machines that calculate the fractal. After this, the fractal calculation is divided in specified amount of smaller tasks and shared with the defined computers connected as a network with Globus framework. The results of the calculation are sent back to the client machine as the calculation goes on. The third part, the sniffer, measures bandwidth and latency between the machines that calculated the fractals. The calculation time of each fractal is also measured.

In addition to this document, the Nexus group has written other documents that consider the Nexus project and the software implemented during the project. The project, the software and the sniffer plan describe the planning of the project and the software. The testing plan considers how the testing was planned to carry out and the test report represents the results of the testing. The measurement report describes and analyzes the measurements that were done to find out when it is useful to distribute tasks. The project report considers how the project succeeded. How the necessary installations related to the software are done is described in the installation document and the help presents how to use the software.

This document describes how the software was implemented and what kind of limitations there are in the software. Chapter 2 represents the structure of a distributed system. Chapter 3 describes the classes of the Java Cog that are used for distribution in the system. In Chapter 4 are described all the implemented classes of the project’s software including the attributes and methods of them. The next chapter represents the user interface with pictures of it. Chapter 6 describes the tests that were made during the project and Chapter 7 introduces the problems that were confronted and Chapter 8 some ideas for the further development.

2 The structure of the system
This chapter describes the structure of the system from the Globus Toolkit point of view. The main features of it can be seen in Figure 1.

2.1 The Globus resource management architecture

A Globus application consists of the following components: a client application, broker, information service, co-allocator and one or more GRAM components. Information between these components is transmitted using the resource specification language (RSL).

The information service provides access to information about the current availability and capability of resources the user has access to. In the Globus system the Metacomputing Directory Service (MDS) is used for maintaining information service. MDS uses the data representation and the application programming interface defined in the Lightweight Directory Access Protocol (LDAP).

Resource brokers are responsible for taking RSL specifications and transforming them into more concrete specifications. These can be passed for example to a co-allocator that is responsible for coordinating the allocation and management of resources at multirequests. Co-allocator splits the request into its components, submits each component to the appropriate resource manager and handles the resulting set of resources as one. Dynamically Updated Request Online Co-allocator (DUROC) is a component for handling all these tasks.

GRAM (Globus Resource Allocation Manager) belongs to the lowest level of the resource management architecture in the Grid technology. It is responsible for processing RSL specifications representing resource requests by either denying the request or by creating one or more processes according to the request. It also enables remote monitoring and management of the created jobs and updates the MDS information service with information about the current availability and capabilities of its resources.

2.2 The components of the GRAM

The principal components of GRAM are the gatekeeper, the job manager, the local resource manager, the RSL parsing library and the MDS: Grid Resource Information Service (see Figure 1). The GSI (Globus Security Infrastructure) is used for authentication.

Figure 1. The structure of the Globus system in the project.

The task of the gatekeeper is to respond to the requests of the other machines. This is done by doing three things: performing the mutual authentication of user and resource, determining a local user name for the remote user and starting a job manager. The job manager is executed as that local user and actually handles the request. The first two tasks are performed by calls to the GSI.

This usually involves submitting a resource allocation request to the underlying resource management system. The job manager handles the monitoring of the state of the created processes. It also notifies the callback contact if the state of the process changes and implements control operations such as process termination.

The MDS: Grid Resource Information Service is responsible for storing into MDS various information about scheduler structure and state. This includes e.g. total number of nodes, number of nodes currently available, currently active jobs and an expected wait time in a queue.
3 The classes that are used for distribution

Let us consider the classes that were used to implement the distribution in Fractal Calculator software are described. Most of them are part of the Java Cog library but a few classes had to be implemented by the project.

3.1 The classes implemented by the project

The project implemented the class GlobusClient that controls the usage of the Globus Toolkit. Also, the self-made class JobListener implements the interface JobOutputListener and handles the output of the distributed tasks on remote machines.

3.2 The classes used from the Java Cog library

The Java Cog class org.globus.mds.MDS is used to get information about available resources to hashtable mdsResult. To submit distributed tasks on the available machines the class GlobusProxy and the string rsl are needed. The class GlobusProxy contains the user key and the user certificate of the Globus. These are used to identify the user to the remote machine. The string rsl is created using the class org.globus.gram.GramAttributes and it contains all the information about executing the task distributionally.

When all the initializations above have been made the method GlobusRun.main is executed to transmit the distributed tasks to the remote machines. When the status of a process changes the information about that is sent to the local machine.

Each output of the remote tasks goes to a different output file to the computer where the GASS server is located. The class GassServer redirects each output file to the separate JobOutputStream stream. Before this can be done, the JobOutputStream has to be registered by the GassServer. When the output of each JobOutputStream is updated the method outputChanged in the class JobListener is called. When a task is finished and no more output is generated method outputClosed is called.

4 The classes of the software

This chapter describes the frames, the dialogs and the classes that are used in the Fractal Calculator software.

4.1 ApplicationUI

ApplicationUI is the starting class of the application. The class has the following attribute:

frame

is the main frame of the application.

The method of the class is the following one:

main(String[] args)
starts the application.

4.2 FrameUI

The main frame of the application, FrameUI, contains the visualization of the fractals. From this frame it is possible to define all the information that is needed to calculate and visualize the fractals. From this frame also can be opened the sniffer frame where viewing the measurement results is possible.

The class has the following attributes:

MAX_FRACTALS
contains the maximum count of fractals.

fractals

contains the current number of chosen fractals.

computers

vector contains the available computers from the MDS server.

panels

vector
contains DBVisualizers where the fractals will be drawn.

Parsers

vector contains Parser for every fractal.

fractalNumberChanged is true if the number of fractals has been changed.

fractalPanelsCreated knows whether DBVisualizers for drawing the fractals have been created or not.

isWindows

is true, if the operating system is Windows and false otherwise.

calculating
is true when there is fractal calculation and drawing going on. The value is false when all the fractals have been drawn.

hostname

contains the name of the local machine.

globusClient
makes the RSL strings for distributed calculation and handles the distribution.

mdsTimer

is the timer for measuring the time of getting the results from MDS server.

nwsTimer

is the timer for the total time of the fractal calculation. It will be started when the calculation is started and stopped when the last fractal has been drawn.

The methods of the class are the following ones:

setHostname() sets the name of the local machine as the hostname.
setFractals(int number)sets the number of the fractals and disables the start and sniffer choices when the number of fractals has changed.
getFractals()returns the number of the fractals.
enableStartAndSniffer(boolean b) enables or disables the start and sniffer choices.

enableStop(boolean b) enables or disables the menu item and the button for stopping the calculation.

getSelectedComputers(int fractal) returns the selected machines of the fractal.

createFractalPanels() creates the panel where the fractal will be drawn for every fractal.

askAvailableComputers() gets the available machines from the MDS server and measures how long this takes.
startLocalCalculation(String[] param) starts the local calculation for the fractals that have been chosen to be executed on the local machine.

startTimer(int index) starts the timer of the given fractal to measure the time that the calculation and visualization takes.
setRenderingValues() sets the values for rendering the fractals.
public void calculationFinished()is called when either all the fractals have been drawn to the screen or the user wants to stop the calculation by clicking buttonStop. The method stops the nwsTimer that measures the calculation time and halts the NWS sensors that were started as the calculation began.

getParameters() returns the fractal parameters.

getParameterNames() returns the names of the fractal parameters.
4.3 DialogFractals

From dialog DialogFractals it is possible to select the number of the fractals to be calculated. The class contains no attributes. The class has the following method:
setOkButton(boolean calculating) disables the OK button when the application is calculating fractals. It enables the OK button if there is no calculation going on.

4.4 DialogProperties

From the dialog DialogProperties the user can define the parameters that are used in the calculation and the drawing the fractals.

The attributes of the class are the following ones:
parameterStringArray contains the values of the fractal parameters.

textFields[]
is an array of JTextFields that contains the parameters for the fractal calculation.

parameterNames[]
contains the names of the fractal parameters.

The class has the following methods:

setParameterStringArray() sets the fractal parameter values from the dialog to the parameterStringArray.

getRadianParameters() returns the fractal parameters in a String array and changes the rotation values into radians before that.

getParameters() returns the parameterStringArray which contains the fractal parameters.

getParameterNames() returns the names of the fractal parameters.

setOkButton(boolean calculating) disables the OK button when the fractal calculation is going on, It enables the button when there is no calculation.

getBgColor() returns the background color of the panel jPanelColorBg1.

getFractalColor() returns the background color of the panel jPanelColorFractals1.

getRenderingValues() returns the values that are needed in rendering the fractals.

checkValues(int low, int high, JTextField textField) checks if the integer value in textField is between low and high.

checkValues(double low, double high, JTextField textField) checks if the real value in textField is between low and high.
4.5 DialogComputers

The dialog DialogComputers contains the ComputerTabs for each fractal and handles them. From the dialog it is possible to define the calculating computers for every fractal.

The attributes of the class are the following ones:

allSelectedComputers vector
contains all the selected computers.

MachinesChanged

knows when the selected machines have changed.

The class has the following methods:

addTabToPanel(String title, Component comp) adds the ComputerTab comp with the given title to this dialog.

removeTabsFromPanel() removes all the ComputerTabs from this dialog.

getTabCount() returns the count of ComputerTabs which is the same as the count of the fractals to be calculated.

getTab(int index) returns the ComputerTab from the given index.

getCountOfSelectedComputers(int index) returns the count of selected machines for calculation from the ComputerTab at the given index.

getSelectedComputers(int index) returns the selected computers from the ComputerTab at the given index.

setAllSelectedComputers() adds all the selected machines from all of the ComputerTabs to the vector allSelectedComputers.

getAllSelectedComputers() returns the names of all the machines that have been chosen to participate on the distributed calculation.

setOkButton(boolean calculating) enables or disables jButtonOk.

readyToCalculate() returns true if the calculating computers have been selected for all the fractals and the calculation is ready to start.

4.6 ComputerTab

From the class ComputerTab the calculating machines can be defined for one fractal.

The attributes of the class are the following ones:

selected

contains the selected machines.

avail

contains the available machines.

chosenComputers

saves the selected machines.

availableComputers:
saves the available machines.

allComputers

contains all the available machines.

local

is set true if the user chooses to calculate on the local machine.

calculateLocally
contains the information whether the calculation is done on the local machine or not.

The class has the following methods:

getSelectedComputers() returns the selected computers for calculation of this ComputerTab.

getAvailableComputers() returns the computers that have not yet been chosen to calculate this fractal.

getCountOfSelectedComputers() returns the count of the selected computers of this tab.

updateLists(JList list, Vector add, Vector remove) updates the lists of available and selected machines.

enableComponents(boolean b) enables or disables the components in the dialog.

setComputersToLists() sets the accurate machines to the lists of the available and the selected computers.

updateValues() updates the values in the vectors chosenComputers and availableComputers with the machines from the vectors selected and avail.

readyToCalculate() returns true if the calculating machines have been chosen for the fractal of this ComputerTab or if the calculation is chosen to be done locally.

cancelValues() sets the previously defined values back to the dialog.

4.7 DialogOptions

From DialogOptions can be defined the names of the machines where MdsServer and NwsServer are located. Also the measurement period for the sniffer and the name or the path of the executable can be defined.

Attributes of the class are the following ones:
nwsServer
contains the name of the computer where NwsServer is.

mdsServer
defines the name of the computer where MdsServer is.

executable
contains the name or the path of the executable program.

period
defines the interval of the measurement for the sniffer.

The class has the following methods:
getMdsServer()
returns the name of the MdsServer.

getNwsServer()
returns the name of the NwsServer.

getPeriod()
returns the period for the sniffer.

getExecutable()
returns the name or the path of the executable.

4.8 DialogAbout

The dialog DialogAbout shows information about the software. It has no attributes and no methods.

4.9 GlobusClient

The class GlobusClient handles the starting of the distributed calculation. It makes rsl strings for distributed calculation and starts the calculation on distributed machines. The class also loads GlobusProxy that is needed for identifying the user to the distributed computers and starts a new GassServer for getting the output information of the distributed tasks.

The attributes of the class are the following ones:

attributeString
contains the rsls as String for every machine that is chosen to participate into calculation.

gramAttributes
contains the GramAttributes of every calculating machine.

rsl

contains multirequest rsl Strings for every fractal.

jobListeners
contains the GramJobListeners for every machine.

outputStreams
contains the JobOutputStreams for every machine.

P

contains the GlobusProxy loaded from the current working directory.

server

contains a server that registers the JobOutputStreams of each calculating machine.

job_count

defines the count of the calculating machines for defining a different JobListener for every machine.

 The class has the following methods:

setProxyAndServer() loads a GlobusProxy from the current working directory and starts a new GassServer.
makeRslForEachComputer(int fractals, String[] param) sets rsl Strings for each fractal and each calculating machine of the fractal with the chosen fractal properties and machines.

makeMultiRequestRsls(int fractals) joins the separate rsl Strings into multirequest rsls for each fractal.

start(int fractals, String[] parameters) starts the distributed calculation.

stop() unregisters the JobOutputStreams that have been listening to the output data from the distributed tasks.

4.10 JobListener

The class JobListener listens to the output of the distributed fractal calculating processes. It also starts the drawing of a line of the fractal and knows when the output is closed.

Attributes of the class are the following ones:

Id

is the id of the panel to which the drawing is done.

name

is the name of the JobListener.

Buffer

contains the buffer where the data is stored.

BufferCreated
is true when the buffer is created.

bufferStart
is the index that determines buffer's current start position.

The class has the following methods:

outputChanged(String output) handles the output of the distributed processes. The output string is divided into blocks that represent the horizontal lines of a fractal.

outputClosed() is called when the output is closed. It also prints a message of the situation.

4.11 Parser

The class Parser parses the local machines output so that the fractal can be drawn to the screen.

The attributes of the class are the following ones:
ELEMENT_SIZE defines how many bytes is used to present one number.

Filename contains the name of the executable.

The class has the following methods:
countFractal() starts the program that calculates fractals from the command line.

run() reads fractal data from the output stream and draws the fractal to the screen.

4.12 DBVisualizer

The class DBVisualizer visualizes the fractal by drawing fractal’s horizontal depth line that is given in encoded character table to the screen.

The attributes of the class are the following ones:
linesDrawn

defines how many lines of the fractal have been drawn.

timer

is a timer for measuring the time spent both for the calculation and the visualization of the fractal.

finishedFractals contains the number of finished fractals.

fractals

defines the number of fractals to be drawn.

The class has the following methods:
Init(int psize_x, int psize_y, int psize_z, Vector3d S_point,Vector3d E_point) initializes the values.

DrawLine(int y_position, float [][] intensity_table) draws the line of a fractal on the screen.

calculate_color(float Dintensity,float Sintensity,int colorid) calculates the integer value of the color of the fractal.

Render(int [] y_line) renders the given line.

paintComponent(Graphics g) draws the fractal to the screen.

parseLine(char [] chr) parses the encoded line.

convert_integer(int value) converts a bit value to integer.

setOColor(int color_r, int color_b, int color_g) sets the color of the fractal.

setBColor(int color_r, int color_b, int color_g) sets the color of the background.

setRenderingAttributes(double Kd, double Ks, double Pot) sets the values that are needed to render the object.

giveSize_x() returns the value of Size_x.

giveSize_y() returns the value of Size_y.

giveSize_z() returns the value of Size_z.

giveElementSize() returns the value of ELEMENT_SIZE.

startTimer() starts the timer of this DBVisualizer.

stopTimer() stops the timer of this DBVisualizer.

getTime() returns the time of timer as String.

4.13 DBRenderer

The class DBRenderer renders the pixels’ depth values to the light intensity values by using the Phong-shading model.

The attributes of the class are the following ones:
Il
defines the intensity of light point.

Ia
defines the intensity of an ambient light.

Ka
defines the ambient light coefficent.

Kd
defines the diffused light coefficent.

Ks
defines the specular light coefficent.

Pot
defines the roughness of a surface.

The class has the following methods:
Rend_line(int y_position) renders a line of a given y_position.

calculate_lightvector(int x, int y) calculates the light vector from light source to the given point.

calculate_normal(int x, int y) calculates normal for the object in the given point.

get_real_value(int x, int y) modifies the ‘logical’ depth buffer position to the real 3d-value vector.

Render(int y_position) renders a line of a given y_position. The current depth_line has to be set from the setDepthline method.

Get_AIntensity() returns the intensity of an ambient light.

setRenderingAttributes(double kd, double ks, double pot) sets the values that are needed in rendering the fractal.

setDepthline(int [] y_line, int y_position) sets the depth data line in the depth buffer.

4.14 MyTimer

The class MyTimer is used for taking time. The attributes of the class are:

started

is the starting time of this MyTimer.
timeInMillis
defines the time that is calculated when this MyTimer is stopped.

The class has the following methods:

start() starts the timer.

stop() stops the timer.

getTimeInMillis() returns the time in milliseconds.

getTime() returns the time as String in the format hours:minutes:seconds.

t2s(long input) returns the given time as String.

4.15 FrameSniffer

The frame FrameSniffer shows the times of getting machines from the MdsServer and calculating each fractal. From this dialog it is also possible to create graphs on bandwidth and latency between two machines. It can also be used to save times and measurement results to file.

The attributes of the class are the following ones:

NAME

contains the name of the measurement activity.

PORT

defines the port of the NwsSensor.

FRACTAL_COUNT
defines the maximum number of the fractals.

hostname

defines the name of the local machine.

isWindows

is true if the operating system is Windows.

fractalCount
contains the current number of the fractals.

count

contains the number of the measurement results to be asked and shown.

period

defines the interval of the measuring bandwidth or latency.

fTimeLabels
contains the labels that show the times of getting the results from the MdsServer and calculating fractals.

saveFile

defines the file where the results are saved.

ls

contains the line separator mark of the current operating system.

nwsServer

defines the computer where the nwsServer is running.

sensor

controls the measurement.

nwsClient

gets the measurement data from the NwsServer.

bandwidth

contains the measured bandwidth.

latency

contains the measured latency.

The class has the following methods:

setFractals() adds the names of the calculated fractals to the jComboBoxFractal.
setComputers(Vector m) sets the names of the computers that calculated the fractal selected in jComboBoxFractal to jComboBoxSource and jComboBoxDestination.
setFractalCount(int fractals) sets the current number of fractals to fractalCount.

haltActivity() halts the measuring activity of all the machines under NAME.
startActivity(Vector allMachines, int period) starts activity on each machine that is chosen to participate on the distributed calculation.

setTimes(Vector times, String mdsTime, long nwsTime) sets the times of getting the results from the MdsServer and calculating each fractal to the corresponding labels. Also, it counts how many measurement results will be asked from the nws memory server when the latency and bandwidth results are asked.
emptyCharts() empties the charts that show the bandwidth and latency values.

createFile() creates a new file to the directory the user has defined. It writes the fractal parameters, the fractals and the calculation machines into the beginning of the file.
4.16 NwsClient

The class NwsClient gets the measurement results from the NwsServer.

The attributes of the class are the following ones:

address
contains the address which NwsClient tries to connect to (the address of the NwsServer).

port

defines the port that the NwsServer listens to.

data

defines the object that contains the measurement results.

The class has the following methods:

query(String skill, String from, String to, int count) gets the measurement results and puts them into the array.

getData() returns the measurement data.

getFromTo() returns a String where the source and destination machine of the measurement data are told.

4.17 NwsHandler

The class NwsHandler handles the request to acquire data from NWS. It executes nws_extract from command line and inserts data into the data object. The class has the following attribute:
DataObject contains the acquired data from NWS.

The class has the following method:

getData() returns the data object where measurements are stored.

4.18 NwsServer

The class NwsServer listens to a port. When a connection is made the class receives an extract command, parses it and then passes arguments to NwsHandler. After NwsHandler has finished, it sends the data object thru to the client and starts to listen for connections again. The class has no attributes. The method of the class is the following one:

main(String argv[]) starts the class.

4.19 NwsData

This class NwsData gets the measurement results from the NwsServer. The attributes of the class are the following ones:

source

contains the name of the source machine of the measurement.
destination
contains the name of the destination machine of the measurement.
service

defines the type of the measurement.
data

contains the measured data.
lines

defines the number of lines in the measurement information data.
The class has the following methods:

createTime(long time) returns the current time.

VectorToData(Vector strBuffer) creates the dataset and the labels from the vector.

setSDS(String src, String dest, String serv) sets the names of the source, the destination machine and the type of measurement data to get.

getSource() returns the name of the source machine.

getDestination() returns the name of the destination machine.

getService() returns the type of the measurement.

getData() returns an object that contains the measured data.

5 The user interface

This chapter describes the user interface and the dialogs and also shows the pictures of them.

5.1 The main window of the user interface

The main window of the user interface is seen in Figure 2. The window contains a command menu from where the user can perform all the basic functions of the program. Below the main menu is located a toolbar which contains the speed buttons of the program. The rest of the window area is reserved for the panels where the fractals are drawn into.

[image: image1.png]

Figure 2. The main window of the program.

When a user starts the program there are only the command menus File and Help as well as few buttons on the top of the user interface. In the same time as the program starts, the MDS server is contacted to find out the resources on which the fractal calculation can be done. This information is used when the user defines on which machines each of the fractals will be calculated. In order to get new resources the user has to apply for them directly from the owner of the wanted machines.

The command menus are File, Fractals, Calculation, Measurement and Help. The first three buttons are shortcuts choosing the number of calculating machines, the fractal parameters and the calculating machines for each fractal. After all these values are chosen the fractal calculation can be started either with the Start button or from the Calculation menu. If the calculation is going on it is possible to stop the drawing with the Stop button or from the Calculation menu. It should be noticed that only the drawing is stopped while the actual processes that calculate the fractals are still running on the computers.

After all the calculated fractals have been drawn to the screen, it is possible to view the measurement results of the calculation by clicking the Measurement button or from the Measurement menu. The frame Measurement Results will then be opened (see Chapter 5.5).

The number of the fractals dialog

The Number of Fractals dialog seen in Figure 3 is for choosing the number of the fractals that will be calculated. The number can vary from one to nine fractals.

[image: image2.png][Number of the Fractals

Choose the number of the fractals 4 -

Figure 3. The Number of the Fractals dialog.

5.2 The fractal properties dialog

The Fractal Properties dialog is used to specify all the parameters related to the calculation and the appearance of the fractals. The user can change the properties for the calculation, drawing and fractal shape from the fractal properties dialog. The different kinds of properties have been divided to the three tabs.

The tab Shape contains properties that affects to the shape of the fractals (see Figure 4). The properties that can be changed are the rotation, the calculation area and the constants of the fractals.

[image: image3.png][F&iFractal Proper

Calculation Area

Rotton

Stortpot Endpoit

x[_d X [g [x [14
[d

v [9

v [19

g

i [g |2 [14
constant
o | [Yo | | 2 odf | | W ot

-

cancel

Figure 4. The tab Shape of the Fractal Properties dialog.

The calculation properties in the interleaf Calculation affect to the calculation times, to the resolution of the fractal and to the network traffic. The tab is seen in Figure 5.

[image: image4.png]Fractal Properties

[Steps [Nurnber of terations—|
%[_s00) 19
¥[_s00)

[SteplLengthz
z[_sog 200
Wvalue Bl Out Value
01 16

Figure 5. The tab Calculation.

From the interleaf Drawing (Figure 6) the user can determine the values attached to the drawing of the fractals. The user can change the color settings and the Phong shading model attributes.

[image: image5.png][F&iFractal Proper

‘Shape | Calculation |[Drawing |

[Difiuse Light Cosfiient |

Color afthe Fractals

4

!

1

-Calor afthe Background

N --

| Roughness of the Surfacs

E

i

oK cancel

Figure 6. The tab Drawing.
Dialog computers

The dialog Calculating Computers is seen in Figure 7. The dialog is used for selecting the calculating computers for each fractal. All the available computers for distributed calculation are seen in the list on the left side of the dialog. The computers have been retrieved from the MDS server. The user can also determine that the fractal calculation will be done on the local machine by selecting the item Calculate on this computer. After this, the other computers are disabled.

[image: image6.png]Available computers Calculating computers.
panamaitjyun =] belize tjyu.f
paraguay.tiyufi bowrnanitjyuf
nigaragua itiyufi Moy itiyufi

peruitiuf >

ecuador ity
honduras.tjun
orazl tjyu i
jamaica.tiyuf <
fthrissur ity
colombia.tiyu i
suriname.tjyu

[Calcutate on this computer

Figure 7. The Dialog Computers.

The measurement results

The sniffer window contains all the measurement information of the calculation. In the bottom of the window there are the calculation times for the fractals and the time for getting the MDS results. The user can view bandwidth and latency measurements between the source and the destination machines on the chart and save the times and the other measurement values to the given file.

[image: image7.png]

Figure 8. The Measurement Results window.

6 The tests and measurements

The tests that were carried out during the project are described next.

6.1 Testing the software

During and after the development of the application, functionality and usability tests were carried out. At the end of the implementation, the supervisor on charge Jukka-Pekka Santanen did the beta testing of the user interface and the usability of the software. According to these results the user interface was edited to be more usable.

The project group tested the software according to Testing Plan. The results of this can be read from Testing Report. In general, the software worked fine and there didn’t occur any unexpected problems.

6.2 Measuring the cost efficiency of distribution

The main goal in Nexus project was to produce information about the efficiency of distribution using Globus Toolkit. The measurement was done using 12 remote machines with equal resources. The project measured the running time of the specified calculation task as well as latency and bandwidth of the network during the execution.

First, the project measured the efficiency of the distribution using small (40 seconds on one computer), medium (5 minutes on one computer) and large (15 minutes on one computer) task. Each task was executed separately on one local machine and on 1, 2, 4, 8 and 12 remote machines. The local machine case was clearly the slowest in every task. This is probably because of heavy rendering and drawing routines local machine has to carry out. In the small task, using more than two machines gave no advantage in the execution time. In the medium and large tasks the advantage of the distribution was gained up to 12 machines. Nevertheless, the efficiency of the distribution decreased as the number of machines increased.

The second case was to measure the influence of the data amount sent through the net. This was carried out by creating 1, 2, 4 and 8 multiple jobs from the same task. Each job was executed in one remote machine separately. Therefore, the tasks were computationally same demanding but differed on the amount of data sent through the net. Due to a memory problem it was possible to execute this case in medium task only. There wasn’t difference between execution times in different tasks.

The more specific information and results of the measurement are described in Measurement Report.

7 The deficiencies of the software

During the implementation of the software there occurred many problems. The project group managed to solve most of them but there was still left a few limitations in the software. The next chapter describes these limitations and problems and the solutions of them.

7.1 The limitations of the software

There are few limitations with the software. The biggest problem is the limited memory resources with big data amounts that also cause the crash of the system. It happens when the data is sent over the network from the remote computers to the user interface. This is due to Java Cog’s memory reservation routines. It seems that Globus and especially Java Cog are not designed to be used in transferring big data amounts in short time period. This applies especially in real time applications.

Another problem concerns the implementation of the distribution. The distribution was planned to be implemented using the MPI library that is commonly used in parallel computing. However, there occurred a problem because MPICH-G2 needs DUROC component to be able to initialize the jobs but Java Cog does not support DUROC. Therefore the distribution was implemented in the user interface by giving parameters that define the calculation area for each job.

In the distribution the original plan was to use the Java Cog class GramJob. The class allows one to transmit the task to the remote computer, to monitor the stage of the process and to stop it. However, when the GramJobs were used it was not possible to get the output data from the remote computers as a whole. So, the distribution was implemented running GlobusRun command. Distributing the tasks like this, it is impossible to stop the calculation by terminating the processes on the remote computers. Now, in the Fractal Calculator software it is possible to stop the visualization of the fractals but the actual processes are left running on the remote computers. However, it is not possible to stop the local calculation.

Using the NWS component as a sniffer causes also one limitation to the measurement. That is, the measurement can’t be done from a Windows machine. This is because the NWSSensor that does the measuring cannot be set running in Windows. So, it is possible to measure bandwidth and latency only between two Linux computers. If the measurements are wanted between the user interface machine and one calculating machine the user interface must be running in Linux.

7.2 The solved problems

One of the solved problems concerned the fractal visualization. It was planned to be implemented using Java3D, but it turned out that complex object like 3D-fractal was very difficult to visualize using the vector-graphic routines of Java3D. The fractal visualization routines were then done by the project group.

Running and installing the Globus Toolkit was also not problem-free. Firstly, all the needed environment variables were not set. This problem was difficult to trace since the occurred error message “Proxy doesn’t exists” was a little bit misleading. The second problem appeared in MDS registration since the MDS server didn’t register any computers at all. This problem was simply caused by the wrong shell-version (Bash2).

There was also a problem concerning the data transmission. The I/O-Stream seemed to modify the sent bytes somehow so that the received data was not the one that was sent. Using only six bits in the middle of a byte solved this problem.

8 The ideas for further development

Using job’s output-stream in the data transfer is very slow in the software. The data-transfer could be implemented with the more efficient way using for example MPICH-G (difficult to co-operate with Java Cog) or lower lever Globus-routines.

The project group didn’t have much time to use in implementation of the user-interface. And because it wasn’t the first priority in the requirements for the software, the user interface is not as good and clear as it could be. So, some development would make it to be more clear and usable.

The save and load-functions for calculation parameters would be useful to be implemented. Then it wouldn’t be necessary to always type the parameters but the calculations could be loaded from the disk

In the software, the start of the distributed calculation takes a long time when the local calculation is executed on the same time. This is due to the fact that the local calculation takes so much of the processor’s efficiency that there is not enough time for Java Cog’s job-starting processes. This also could be fixed.

9 Conclusions
Nexus group implemented software that visualizes three-dimensional fractals, distributes the calculation of them with the Globus Toolkit and measures the cost-efficiency of the distribution. This document described how the software and its components were implemented and what kind of problems the project group confronted.

The results from the cost-efficiency of the distribution were just like was predicted. Distribution of small tasks emerged not to be as efficient as distributing tasks that take quite a long time. In all of the measurement cases the distribution even on one computer was efficient and faster than executing the task on the local machine.

It was concluded that using I/O-stream in data transferring is far too slow (100-200 kb/s) for applications that need to transfer a lot of data in a short time. If Globus is wanted to be used in applications like that it could be worthwhile to try using MPICH-G2 or Globus internal-routines.

Local Resource Manager

Job Manager

Gatekeeper

MDS: Grid Resource Information Service

GRAM

MDS: Grid Index Info Server

User Interface

Java 3D

Java CoG

Win2000

