

Peltihamsteri

Technical manual

University of Jyväskylä

Faculty of Information Technology

Contents

1 DEVELOPMENT ENVIRONMENT .. 1

1.1 Setting up a development environment for Syncster 1

1.2 Setting up a development environment for Touchster 1

2 INSTALLING SYNCSTER AND TOUCHSTER .. 2

2.1 Instructions for installing Syncster ... 2

2.2 Instructions for installing Touchster ... 3

3 ADDING MODULES TO SYNCSTER ... 5

3.1 Implement prerequisite classes ... 5

3.1.1 ExampleReader .. 5

3.1.2 ExampleWrapper ... 7

3.2 Binding to Manager ... 8

3.3 Binding to UI .. 9

Page 1 / 9

1 Development environment

In this chapter we give basic instructions on setting up development environments for

Syncster and Touchster.

1.1 Setting up a development environment for Syncster

Following prerequisites are required for developing Syncster:

1. Visual Studio 2017. Community version is sufficient, but for improved testing

facilities, it is recommended to use Enterprise if available.

2. .NET Framework version 4.6.1 (or higher) must be available on the system.

After prerequisites have been met, project can be opened simply by opening Ajo-

labra.sln. It consists of 4 projects:

o ALGUI: Entry point, main user interface

o ALManager: Manager, interfaces between ALGUI and ALBackend, managing

backend components and providing a simplified interface to the GUI.

o ALBackend: Backend, contains device-specific modules and abstract pipeline

components.

o ALUnitTests: Unit tests for all other projects, separated from the actual code.

For instructions on how to connect all supported devices to Syncster, see Syncster’s

instruction manual (Syncster_instruction_manual.pdf).

1.2 Setting up a development environment for Touchster

For Android development, you will need Visual Studio 2017 and Visual Studio Tools

for Xamarin. Xamarin’s versions used are as follows:

o Xamarin: 4.12.3.80

Page 2 / 9

o Xamarin Designer: 4.6.13

o Xamarin Templates: 1.1.128

o Xamarin.Android SDK: 9.1.7.0

In addition, you will either need an Android device for testing, or an Android emula-

tor if you do not have such a device. Once these prerequisites have been met, open

AndroidTouch.sln.

2 Installing Syncster and Touchster

In this chapter we outline the process of compiling a release version of Syncster and

making an apk-file of Touchster.

2.1 Instructions for installing Syncster

Here’s how to make a release version for a 64 bit PC with Windows 10:

1) Open Syncster’s solution in Visual Studio 2017. Make sure the ALGUI project is

set as Startup Project.

2) Select Project ALGUI Properties…

a. In the Application tab, you can change the Assembly name (“Syncster”),

Target framework (“.NET Framework 4.6.1”) and Output type (“Windows

Application”), if needed. Please let hamsterIcon.ico stay as the project’s

icon, though.

3) Select Solution ‘Ajolabra’ in Solution Explorer.

4) Select Build Configuration manager.

a. Change “Active solution configuration” to Release.

i. Each project’s Configuration should automatically change to Re-

lease.

b. Change “Active solution platform” to x64.

i. Each project’s Platform should automatically change to x64.

Page 3 / 9

c. Click Close.

5) Select Build Rebuild solution.

6) Now there should be a working release version of Syncster inside the folder

Ajolabra\ALGUI\bin\x64\Release and it should contain the following

files:

a. ALBackend.dll

b. ALBackend.pdb

c. ALManager.dll

d. ALManager.pdb

e. Syncster.exe

f. Syncster.exe.config

g. Syncster.pdb

h. Syncster_instruction_manual.pdf

7) Copying the Release folder to the desired location on a PC fit to run the build is

enough to install Syncster.

2.2 Instructions for installing Touchster

Here’s how to make a Touchster apk-file and install it:

1) Open Touchster's solution in Visual Studio 2017 (with Xamarin Tools installed).

2) Pick Release from Solution Configurations.

3) Go to the project’s Properties.

a. From Android Manifest:

i. Change Application name, if needed.

ii. Give new Application icon, if needed.

iii. Make version number higher than before (for example old being

1.2, new could be 1.3 or 1.21).

b. From Android Options:

Page 4 / 9

i. Deactivate debugging (should already be off if you picked re-

lease).

ii. Linking: Select Sdk Assemblies Only (makes app's size smaller).

4) Select Build Rebuild Solution.

5) From Solution Explorer right click your project and select Archive. Visual Studio

will show an indeterminate progress bar.

6) When Visual Studio is ready:

a. Select the version you created.

b. From its options select Distribute.

c. Select Ad Hoc.

d. Signing Identity:

i. Select “touchster” key (if you can't see it, you need to Import it).

ii. Select Save As.

iii. Save the file in your preferred file location. You can also rename

it.

iv. After this you need to give the keystore's password, which is

touchster.

7) Connect your phone to your PC and copy your new apk-file in it.

8) Find the apk-file from your phone’s directory and tap to install it.

a. You might face problems when installing. This occurs most likely be-

cause Play Protect is stopping the process. To deactivate it, go to Google

Play Store's settings and select Play Protect. From there you can stop Play

Protect ruining your installing process.

b. If you have an older version of Touchster in your phone, a new version

might not install (this occurred once when different development ver-

sions were tested, but not every time). To install a new version, first re-

move the old version and then try installing again.

Page 5 / 9

3 Adding modules to Syncster

Following discrete steps are required to add a new device module to Syncster. In this

section, we assume the reader wants to implement a fictional module for an "Example"

device.

These instructions are only applicable for modules that receive data in real time.

Syncster currently has very little underlying infrastructure to support components that

import data after recording has concluded, so adding such components requires more

extensive development. “Importer” and “ETFileReader” provide an example imple-

mentation of such a component.

3.1 Implement prerequisite classes

Syncster device modules, by pattern, need at least two (2) discrete classes: a Reader

and a Wrapper. The driving simulator module shows an example of how to use more

than two classes, and a more complicated structure. However, in the following sub-

chapters we share a basic knowledge of a Reader class and a Wrapper class.

3.1.1 ExampleReader

Each module has an AbstractPipelineComponent implementation, a so-called

"reader". Each pipeline component operates in its own thread, looping requesting data

until stopped with a cancellation token.

In detail, a reader has the following responsibilities:

o Deliver data using IngestNewData(), by returning a new row of data at arbitrary

intervals.

o Implementation should be able to react to a CancellationToken activating, and

stopping gracefully when requested.

Page 6 / 9

o A single row consists of arbitrarily named keys and IDataElements. These keys

should remain more or less consistent over time, and need not exist on every row.

No key is allowed to have a null value. Do note that if you utilize certain subcom-

ponents, they may have their own requirements. See CSVRawLineSplitter for ex-

ample.

o Implements necessary preparation and shutdown steps where required. Some

components may need to do certain discrete actions before they are started or

stopped completely. This is implemented with NeedsPreparation, PrepareInternal

and ShutdownInternal. Do note that this should also be somewhat resilient to ex-

ceptional stops; even if the component stopped to a fault, ShutdownInternal will

still be called.

o Manages its own subcomponents, starting, stopping and handling exceptions and

messages where necessary. Not all components are required to contain subcompo-

nents, but if they exist, it is required that the enclosing component monitors and

gracefully handles any situations that may occur. Examples of this pattern are

found from DSReader and ETReader.

o Provides log messages using OnLogMessage and OnDebugMessage. Former

should be only used for messages that the average user would find important for

them, whilst latter can be used for more diagnostic, debugging-oriented messages.

o (Optional) Implement PauseInternal and UnpauseInternal. Originally, components

supported a separate pause state, in which components would otherwise be run-

ning, but their data would be discarded. Intention was that components could do

certain optimizations with the knowledge that data is discarded, but this was never

widely used. As such, it is declared obsolete, and in general is not a required part

of a component, but it is good to be aware of this feature.

o (Optional) Implement IDisposable. This is not strictly required from components,

but may be useful to implement if the component uses any resources that should

be manually released.

Page 7 / 9

There are multiple approaches for almost all of the responsibilities mentioned above.

It is recommended to study pre-existing components and from there, select the ap-

proaches best fitting your use-case.

3.1.2 ExampleWrapper

Each device will also need its own IModuleWrapper implementation. More precise

technical definitions are located in IModuleWrapper.cs, but rough responsibilities are

as follows:

o Implement Connect() and Disconnect(), starting and stopping device components

on request. Device components are _connected_ before an actual recording starts.

o Implement StartRecording() and StopRecording(). These typically add and remove

wrapper's internal BlockingCollection from the appropriate component output

queue, but other patterns may be possible as well.

o Implement DiscardData(), which is expected to zero out the contents of captured

data and reset other state where appropriate.

o Implement IObservable<PipelineStatus>. This is commonly delegated to the outer-

most device component, as it implements this same interface.

o Implement IPipelineEvents. This also is commonly delegated to the device compo-

nent, as this essentially requires log and heartbeat events.

o Implement IDataCollector. This contains several methods and properties, which

are detailed below:

o ModuleName: human-readable name of the module which must be usable

as a part of the file name.

o CollectedData: this shall return a copy of the collected data so far.

o UnprefixedStickyKeys: if this module has certain sticky keys (print out on

every row), declare them here.

Page 8 / 9

o SynchronizationCanonicalTimeDeterminer: a canonical time determiner. A

time determiner takes a single row, and returns a DETimestamp object sig-

nifying the canonical time for that row. Canonical time in context of module

wrappers has been declared to be the absolute time in relation to the event

creating that row.

o (Optional) Implement IDisposable. If a module is IDisposable, Dispose() will be

called when the module is about to go permanently out of scope, allowing the mod-

ule to release any manually releaseable resources it may hold.

3.2 Binding to Manager

o Add support to ModuleFactory, allowing the module to be instantiated on de-

mand. This means adding the constructor of the module to the switch-case of the

GetModuleWrapper() method and providing the needed settings as parameters.

o Each module should have a unique name. If modules have duplicate names,

only one of them will be active during recording.

o If the data collected by the module contains keys that can be filtered by the user,

store the blacklisted keys to the _blacklistedKeys variable when Manager’s Con-

nectAsync() method is called.

o (Optional) Add new comparer to ColumnHeaderComparer to determine the order

of columns in the final output CSV. The comparer should inherit the Ab-

stractColumnComparer base class and override its ColumnOrder property. For

more information, see how other comparers (for example “ETComparer” or “EE-

GComparer”) have been implemented. If no comparer is defined, columns will be

arranged in alphabetical order.

o It should also be noted, that the Manager assumes that all modules execute their

actions, such as connecting and disconnecting, without blocking or taking too

much time. Any single module that behaves differently causes indefinite waiting

times, preventing further interactions with other modules as well.

Page 9 / 9

3.3 Binding to UI

o Create appropriate UI elements in MainWindow.xaml for the new component, and

dependency properties for them in MainWindow.xaml.cs. Dependency properties'

default values have been used as a convenient way of providing information to the

user.

o The component needs its own device tab inside the tabctrl_devices tab control.

Please take a look at the other device tabs for guidance.

o Inside the Record tab’s GroupBox with the header “Device names, heartbeats, and

statuses”, create a new grid row for your module. It should consist of a border,

two labels, and an ellipse. See the other rows for example. The latter label and the

ellipse should be properly named, because they will be used in your module’s

state visualization.

o Edit SerializableSettings so that the component properties are appropriately bind-

able to the UI and can be passed onwards.

o Add the component's information to CreateSettings() and ShowSettings() to ensure

data flow for both saving and loading settings.

o If the component has selectable data (like DS and EEG), you should implement a

blacklist method in SerializableSettings that is called from ConnectAsync(). DS and

EEG have very different implementations of blacklisting which are hopefully use-

ful as guides.

o In MainWindow.xaml.cs, you should also listen to your module’s events. Assum-

ing your module is properly connected to Manager, this is already taken care of in

MainWindow’s constructor.

o Inside the code region Backend event handlers, you will need to add some code

to visualize ExampleReader’s state and heartbeat.

 Add your module’s information to the following methods: GetSta-

tusEllipse, GetStatusBrush, and _manager_HeartbeatUpdate.

