

Peltihamsteri project

Mari Kasanen

Leevi Liimatainen

Marina Mustonen

Juhani Sundell

Arttu Ylä-Sahra

Technical manual

Syncster 1.0.0 & Touchster 1.5

Version 0.2.0

Public

5.6.2019

University of Jyväskylä

Faculty of Information Technology

Contents

1 DEVELOPMENT ENVIRONMENT .. 1

1.1 Setting up a development environment for Syncster 1

1.2 Setting up a development environment for Touchster 1

2 INSTALLING SYNCSTER AND TOUCHSTER ... 2

2.1 Instructions for installing Syncster ... 2

2.2 Instructions for installing Touchster ... 4

3 ADDING MODULES TO SYNCSTER ... 5

3.1 ExampleReader .. 6

3.2 ExampleWrapper ... 7

3.3 Binding to Manager ... 8

3.4 Binding to UI .. 9

Page 1 / 10

1 Development environment

In the chapter we give basic instructions on setting up development environments for

Syncster and Touchster.

1.1 Setting up a development environment for Syncster

Following software are required for developing Syncster:

1. Visual Studio 2017 Community is sufficient. For improved testing facilities, it is

recommended to use Visual Studio 2017 Enterprise.

2. .NET Framework version 4.6.1 (or higher) must be available on the system.

After the prerequisites have been met, a project can be opened simply by opening

Ajolabra.sln. It consists of four projects:

o ALGUI is the entry point, and it includes the main user interface.

o ALManager is the manager who acts between ALGUI and ALBackend. It man-

ages the backend components and provides a simplified interface to the GUI.

o ALBackend is the backend containing device-specific modules and abstract

pipeline components.

o ALUnitTests contains unit tests for all other projects, separated from the

actual code.

For instructions on how to connect all supported devices to Syncster, see the instruc-

tion manual of Syncster (Syncster_instruction_manual.pdf).

1.2 Setting up a development environment for Touchster

For Android development, you will need Visual Studio 2017 and Visual Studio Tools

for Xamarin. Xamarin’s versions to be used are as follows:

Page 2 / 10

o Xamarin 4.12.3.80,

o Xamarin Designer 4.6.13,

o Xamarin Templates 1.1.128, and

o Xamarin.Android SDK 9.1.7.0.

In addition, you will either need an Android device for testing, or an Android emula-

tor if you do not have such a device. Once these prerequisites have been met, open

AndroidTouch.sln.

2 Installing Syncster and Touchster

In the chapter we outline the process of compiling a release version of Syncster and

making an apk-file of Touchster.

2.1 Instructions for installing Syncster

To make a release version for a 64 bit PC with Windows 10, carry out the following

steps:

Page 3 / 10

1) Open Ajolabra.sln in Visual Studio 2017. Make sure the ALGUI project is

set as Startup Project.

2) Select Project ALGUI Properties… In the Application tab, you can change the

Assembly name (currently Syncster), Target framework (currently .NET

Framework 4.6.1) and Output type (currently Windows Application), if

needed. Please let hamsterIcon.ico stay as the project’s icon, though.

3) Select Solution ‘Ajolabra’ in Solution Explorer.

4) Select Build Configuration manager.

a. Change Active solution configuration to Release. Each project’s Configu-

ration should automatically change to Release.

b. Change Active solution platform to x64. Each project’s Platform should au-

tomatically change to x64.

c. Click Close.

5) Select Build Rebuild solution.

6) Now there should be a working release version of Syncster inside the folder

Ajolabra\ALGUI\bin\x64\Release and it should contain the following

files:

a. ALBackend.dll,

b. ALBackend.pdb,

c. ALManager.dll,

d. ALManager.pdb,

e. Syncster.exe,

f. Syncster.exe.config,

g. Syncster.pdb, and

h. Syncster_instruction_manual.pdf.

7) Copying the Release folder to the desired location on to a PC is enough to

install Syncster.

Page 4 / 10

2.2 Instructions for installing Touchster

To make a Touchster apk file and install it, carry out the following steps:

1) Open AndroidTouch.sln in Visual Studio 2017 (with Xamarin Tools in-

stalled).

2) Pick Release from Solution Configurations.

3) Open the project’s Properties from Solution Explorer.

a. In Android Manifest:

i. Change Application name, if needed.

ii. Give new Application icon, if needed.

iii. Make version number higher than before (for example old being

1.2, new could be 1.3 or 1.21).

b. In Android Options:

i. Deactivate debugging (should already be off).

ii. Under Linking, select Select Sdk Assemblies Only (makes app's size

smaller).

4) Select Build Rebuild Solution.

5) From Solution Explorer right click your project and select Archive. Visual Studio

will show an indeterminate progress bar.

6) When Visual Studio is ready:

a. Select the version you created.

b. From its options, select Distribute.

c. Select Ad Hoc.

d. In the Signing Identity window:

i. Select the touchster key (if you can't see it, you need to Import it).

ii. Select Save As.

iii. Save the apk file in your preferred file location. You can also re-

name it.

Page 5 / 10

iv. After this you need to give the password of the keystore, which is

touchster.

7) Connect your phone to your PC and copy your new apk file in it.

8) Find the apk file from the directory of your phone and tap to install it.

If there are problems when installing the apk file, you can try the following methods:

o Play Protect may be stopping the install process. To deactivate it, go to the set-

tings of Google Play Store and select Play Protect. Deactivating Play Protect may

allow you to install Touchster.

o If you have an older version of Touchster on your phone, a new version might

not be installed. This occurred once when different development versions were

tested. To install a new version, first remove the old version and then try in-

stalling again.

3 Adding modules to Syncster

In the chapter we outline steps that are required to take in order to add a new device

module to Syncster. We assume the reader wants to implement a fictional module for

a device called Example.

These instructions are only applicable for modules that receive data in real time.

Syncster currently has very little underlying infrastructure to support components that

import data after recording has concluded, so adding such components requires more

extensive development. Importer and ETFileReader provide an example imple-

mentation of such a component.

Syncster device modules, by pattern, need at least two discrete classes: a reader and a

wrapper. DSWrapper shows an example of how to use more than two classes, and a

more complicated structure. However, in the following we share a basic knowledge of

a reader class and a wrapper class, followed by instructions on how to bind the module

to Manager and UI.

Page 6 / 10

3.1 ExampleReader

Each module has an AbstractPipelineComponent implementation, a so-called

reader. Each pipeline component operates in its own thread, looping requesting data

until stopped with a cancellation token.

In detail, a reader has the following responsibilities:

o It delivers data using IngestNewData(), by returning a new row of data at arbi-

trary intervals.

o An implementation should be able to react to a CancellationToken activating,

and stopping gracefully when requested.

o A single row consists of arbitrarily named keys and IDataElements. These keys

should remain more or less consistent over time, and need not exist on every row.

No key is allowed to have a null value. Do note that if you utilize certain subcom-

ponents, they may have their own requirements. See CSVRawLineSplitter for

example.

o It implements necessary preparation and shutdown steps where required. Some

components may need to do certain discrete actions before they are started or

stopped completely. This is implemented with NeedsPreparation, Pre-

pareInternal and ShutdownInternal. Do note that the implementation

should also be somewhat resilient to exceptional stops. Even if the component stops

to a fault, ShutdownInternal will still be called.

o It manages its own subcomponents, starting, stopping and handling exceptions

and messages where necessary. Not all components are required to contain sub-

components, but if they exist, it is required that the enclosing component monitors

and gracefully handles any situations that may occur. Examples of this pattern are

found from DSReader and ETReader.

o It provides log messages using OnLogMessage and OnDebugMessage. The for-

mer should be only used for messages that the average user would find important

Page 7 / 10

for them, whilst the latter can be used for more diagnostic, debugging-oriented

messages.

o (Optional) It implements PauseInternal and UnpauseInternal. Originally,

the components supported a separate pause state, in which the components would

otherwise be running, but their data would be discarded. Intention was that the

components could do certain optimizations with the knowledge that data is dis-

carded, but this was never widely used. As such, it is declared obsolete, and in

general is not a required part of a component, but it is good to be aware of the

feature.

o (Optional) It implements IDisposable. This is not strictly required from compo-

nents, but may be useful to implement if the component uses any resources that

should be manually released.

There are multiple approaches for almost all of the responsibilities mentioned above.

It is recommended to study existing components and from there, select the approaches

best fitting your needs.

3.2 ExampleWrapper

Each device will also need its own IModuleWrapper implementation. More precise

technical definitions are located in IModuleWrapper.cs, but rough responsibilities

are as follows:

o It implements Connect() and Disconnect(), which respectively start and stop

device components upon request. The device components are connected before an

actual recording starts.

o It implements StartRecording() and StopRecording(). These typically add

and remove the wrapper's internal BlockingCollection to/from the appropri-

ate component output queue, but other patterns may be possible as well.

Page 8 / 10

o It implements DiscardData(), which is expected to empty the contents of cap-

tured data and reset other state where appropriate.

o It implements IObservable<PipelineStatus>. This is commonly delegated to

the outermost device component, as it implements this same interface.

o It implements IPipelineEvents. This is also commonly delegated to the device

component, as this essentially requires log and heartbeat events.

o It implements IDataCollector. This contains the following methods and prop-

erties:

o ModuleName is a human-readable name of the module which must be usa-

ble as a part of a file name. It is used as a prefix for the module’s data col-

umns in the final output file, so a ModuleName should be recognizable and

brief (current modules have two to three letter long ModuleNames).

o CollectedData shall return a copy of the collected data so far.

o UnprefixedStickyKeys declares certain sticky keys (that print out on

every row in the output file), if the module has them.

o SynchronizationCanonicalTimeDeterminer is a canonical time de-

terminer. A time determiner takes a single row, and returns a DETimestamp

object signifying the canonical time for that row. Canonical time in the con-

text of module wrappers has been declared to be the absolute time in rela-

tion to the event creating that row.

o (Optional) It implements IDisposable. If a module is IDisposable, Dis-

pose() will be called when the module is about to go permanently out of scope,

allowing the module to release any manually releaseable resources it holds.

3.3 Binding to Manager

In order to make your module usable from the UI, it first needs to be bound to the

Manager. To do this, follow these instructions:

Page 9 / 10

o Add support to ModuleFactory, allowing the module to be instantiated on de-

mand. This means adding the constructor of the module to the switch-case of the

GetModuleWrapper() method and providing the needed settings as parameters.

o Each module should have a unique name. If modules have duplicate names, only

one of them will be active during recording.

o If the data collected by the module contains keys that can be filtered by the user,

store the keys that are not selected to the _blacklistedKeys variable when Man-

ager’s ConnectAsync() method is called.

o (Optional) Add a new comparer to ColumnHeaderComparer to determine the or-

der of columns in the final output file. The comparer should inherit the Ab-

stractColumnComparer base class and override its ColumnOrder property. For

more information, see how other comparers (for example ETComparer or EE-

GComparer) have been implemented. If no comparer is defined, columns will be

arranged in alphabetical order.

It should also be noted, that the Manager assumes that all modules execute their ac-

tions, such as connecting and disconnecting, without blocking or taking too much

time. Any single module that behaves differently causes indefinite waiting times, pre-

venting further interactions with other modules as well.

3.4 Binding to UI

In order to show the settings and state of your module to the user, follow these instruc-

tions:

o Create appropriate UI elements in MainWindow.xaml for the new component,

and dependency properties for them in MainWindow.xaml.cs. Default values of

dependency properties have been used as a convenient way of providing infor-

mation to the user.

Page 10 / 10

o The component needs its own device tab inside the tabctrl_devices tab control.

Please take a look at the other device tabs for guidance.

o Inside the Record tab’s GroupBox with the header Device names, heartbeats, and sta-

tuses, create a new grid row for your module. It should consist of a border, two

labels, and an ellipse. See the other rows for example. The latter label and

the ellipse should be properly named, because they will be used in the state visu-

alization of your module.

o Edit SerializableSettings so that the component properties are appropri-

ately bindable to the UI and can be passed onwards.

o Add the information of the component to CreateSettings() and ShowSet-

tings() to ensure data flow for both saving and loading settings.

o If the component has selectable data (like DS and EEG), you should implement a

blacklist method in SerializableSettings that is called from Manager’s Con-

nectAsync(). DS and EEG have very different implementations of blacklisting

which are hopefully useful as guides.

o In MainWindow.xaml.cs, you should also listen to your module’s events. As-

suming your module is properly connected to Manager, this is already taken care

of in MainWindow’s constructor.

o In MainWindow.xaml.cs inside the code region Backend event handlers, add your

module’s information to the following methods: GetStatusEllipse, GetSta-

tusBrush, and _manager_HeartbeatUpdate, in order to visualize Example-

Reader’s state and heartbeat.

