Potku Software Project

Jarkko Aalto Timo Konu Samuli Kärkkäinen Samuli Rahkonen Miika Raunio

System Testing Plan

Public Versio 1.0.0 28.5.2013

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Approved by	Date	Signature	Clarification of Signature
Project manager	2013		
Customer	2013		
Supervisor	2013		

Information about the Document

Authors:

 Jarkko Aalto (JA) 	jarkko.t.aalto@student.jyu.fi
• Timo Konu (TK)	timo.j.konu@student.jyu.fi
• Samuli Kärkkäinen (SK)	samuli.p.p.karkkainen@student.jyu.fi
• Samuli Rahkonen (SR)	samuli.p.j.rahkonen@student.jyu.fi
• Miika Raunio (MR)	miika.o.raunio@student.jyu.fi

Name of document: Potku project, System Testing Plan Number of pages: 36 File: Potku_SystemTestingReport_1_0_0.tex

Abstract: Potku project developes a user interface for a software used in analyzation and visualization of a measurement data collected with a ToF-ERD telescope. The system testing plan describes the testing enveronment as the well as the test cases of the system testing. The results as well as the found faults and deficiencies will be reported to the document in each testing time.

Keywords: Python, testing, testing enveronments, test cases, testing practices, system testing.

Revision History

Version	Date	Changes	Author
0.0.1	15.4.2013	First version was created.	JA
0.0.2	16.4.2013	Chapters 2 and 3 were written.	JA
0.0.3	17.4.2013	Chapters 4 and 5 were written.	JA
0.0.4	22.4.2013	Chapters 4 and 5 were written.	JA
0.0.5	23.4.2013	Chapters 6, 7, 8 and 9 were written.	JA
0.0.6	23.4.2013	Proofreading of Chapters 1, 2 and 3.	MR
0.1.1	26.4.2013	The spelling and grammar of the document were corrected.	JA
0.1.2	29.4.2013	The spelling and grammar of the document were corrected.	JA
0.1.3	6.5.2013	The spelling and grammar of the document were corrected.	JA
0.1.4	7.5.2013	The spelling and grammar of the document were corrected.	JA
0.2.1	8.5.2013	The spelling and grammar of the document were corrected.	JA
0.2.2	10.5.2013	The spelling and grammar of the document were corrected.	JA
0.3.1	11.5.2013	The spelling and grammar of the document were corrected.	JA
0.3.2	13.5.2013	The spelling and grammar of the document were corrected.	JA
0.4.0	13.5.2013	The spelling and grammar of the document were corrected.	JA
0.4.1	15.5.2013	The spelling and grammar of the document were corrected.	JA
0.5.0	16.5.2013	The spelling and grammar of the document were corrected.	JA
0.6.0	20.5.2013	The spelling and grammar of the document were corrected.	JA
1.0.0	22.5.2013	The spelling and grammar of the document were corrected.	JA

Information of the Project

Potku project developes a user interface for a software to be used in analyzation and visualization of a measurement data collected with a ToF-ERD telescope. The Department of Physics at the University of Jyväskylä is the customer of the project.

Authors:

• Jarkko Aalto (JA)	jarkko.t.aalto@student.jyu.fi
• Timo Konu (TK)	timo.j.konu@student.jyu.fi
• Samuli Kärkkäinen (SK)	samuli.p.p.karkkainen@student.jyu.fi
• Samuli Rahkonen (SR)	samuli.p.j.rahkonen@student.jyu.fi
• Miika Raunio (MR)	miika.o.raunio@student.jyu.fi

Customer's Representatives:

• Kai Arstila	kai.arstila@iki.fi	-
• Jaakko Julin	jaakko.julin@jyu.fi	040-8054097
Mikko Laitinen	mikko.i.laitinen@jyu.fi	0400-994836
• Timo Sajavaara	timo.sajavaara@jyu.fi	040-8054114

Project Supervisors:

 Jonne Itkonen 	jonne.itkonen@jyu.fi	050-4432381
 Jukka-Pekka Santanen 	santanen@mit.jyu.fi	040-8053299
Tero Tuovinen	tero.tuovinen@jyu.fi	050-4413685

Contact Information:

• Email list	potku@korppi.jyu.fi
• Email archive	https://korppi.jyu.fi/kotka/servlet/
	list-archive/potku/
• Email list (educational)	potku_opetus@korppi.jyu.fi
• Email archive (educational)	https://korppi.jyu.fi/kotka/servlet/
	list-archive/potku_opetus/
• Room	Ag C222.2

Potku Project

Contents

1	Intr	oduction	1
2	The	Testing Practices	2
	2.1	Testing Levels	2
	2.2	Regression Testing	2
	2.3	Testing Environments	3
3	Info	ormation about the Testing	4
4	Test	t Cases for Project Management	5
	4.1	Creating a New Project	5
	4.2	Creating a New Measurement	5
	4.3	Opening an Existing Project and an Existing Measurement	6
	4.4	Opening, Saving and Managing a Measurement	7
5	Test	t Cases for ToF-E Histogram	8
	5.1	Graph Functionalities for ToF-E Histogram	8
	5.2	Element Selection	9
	5.3	Element Selection Settings	10
6	Test	t Cases for ToF-E Graph Settings	11
	6.1	ToF-E Sample Settings	11
	6.2	RBS Settings	11
	6.3	Colour Settings	12
	6.4	ToF-E Graph Axis Settings	12
	6.5	ToF-E Graph Histogram Coloring Settings	12
7	Test	t Cases for Project Settings	13
	7.1	Loading and Saving Measurement Settings	13
	7.2	Beam Settings	13
	7.3	Measurement Unit Settings	14
	7.4	Depth Profile Settings of the Project	15
	7.5	Concentration Scaling Settings	15
	7.6	Calibration Parameters of the Project	16

Po	tku Pi	oject System Testing Plan 1.0.0		P	Public
8	Test	Cases fot Time of Flight Calibration			17
	8.1	Fitting Tab in Time of Flight Calibration			17
	8.2	Calibration Tab in Time of Flight Calibration	• •	••	18
9	Test	Cases for Defining Measuring Unit for the Active Measureme	ent		19
	9.1	Active Measuring Common Settings			19
	9.2	Beam Settings			19
	9.3	Measuring Unit Settings			20
	9.4	Defining Depth Profile Settings			21
	9.5	Defining ToF-E Calibration Parameters			22
10	Test	Cases for Analysing Elemental Losses			23
	10.1	Target Cut Files Selection			23
	10.2	Elemental Losses Graph Options	• •	••	24
11	Test	Cases for Energy Spectrum			25
	11.1	Creating a New Energy Spectrum Graph			25
	11.2	Energy Spectrum Graph Options			26
12	Test	Cases for Depth Profile			27
	12.1	Create Depth Profile Cut Files in the Measurement			27
	12.2	Depth Profile Graph Functionalities	•••	•••	28
13	Non	Implemented Requirements			30
	13.1	Specifying Measurement Data		•••	30
	13.2	ToF-E Histogram	•••	•••	30
	13.3	Element Selection in ToF-E Histogram		•••	31
		Element			31
	13.5	ToF Calibration	•••	•••	32
	13.6	Elemental Losses	•••	•••	32
	13.7	Depth Profile Logic	•••	• •	33
	13.8	Depth Profile Graph	•••	• •	33
	13.9	Project Management	•••	• •	34
		Python Interpreter Interface			34
	13.1	Reporting		• •	35
	13.12	Additional Functionalities	• •	••	35
11	ъć				•

14 References

36

1 Introduction

In the student software project course in spring of 2013, Potku project developes a user interface for a software for the material physics research team in the Department of Physics at University of Jyväskylä. The application will be used to analyse the measurement data collected with the team's recoil spectrometer. The software can be used to form Time-of-Flight-Energy histograms and elemental depth profiles from the acquired data.

The testing ensures that the software implementation includes the needed functionalities specified by the customer, as well as the requirements. The system test plan describes testing practices of application in the project. The approach is to test developed software blocks, when they are ready to be integrated. Once the blocks are working as intended, they are integrated to the system. Software verification is carried out with system testing on Windows, Linux, and Macintosh operating system environments.

System Testing Plan consist of 14 chapters. The second chapter describes different software testing levels and the testing environments. The third chapter includes information about the testing. The test cases are described in the Chapters 4 - 12 and Chapter 13 includes non-implemented requirements.

2 The Testing Practices

2.1 Testing Levels

The testing to be carried out ensures that the software meets the desired functionalities specified by the project team, as well as the customers needs. The purpose of the testing is to verify that the application fulfills it's functional and qualitative requirements. The requirements will be met when the testing is succesfully carried out with the unit and system tests.

Unit tests were planned to be programmed to each program module, but unfortunately the project group had no time to write unit test to each module. The aim of the unit testing is to find individual programming errors. Actual testing is the responsibility of all project group members.

The purpose of system testing is to ensure that the analysis results produced by the software are correct in comparison to the results produced by Finlandia software. Actual testing will be carried out by all project group members.

The testing result should be noted with one of the three different outcomes:

- OK, if test passes.
- Fail, if test fails.
- Note, if the tester wants to make notices about the test.

2.2 Regression Testing

The project team corrects the discovered errors according to their present state knowledge and resources. The project team corrects the detected errors as soon as they are reported in the testing plan. All the tests are performed again, to ensure that the software pass the test after modifigations.

An error or a lacking feature might be too grand to be fixed or implemented in a reasonable time in comparison to the potential gain. If it does not compromise the operation of the software and is not critical to the functionality of the software, it's correction shall be discussed with the representatives of the customer.

2.3 Testing Environments

The Requirement Specification [1] dictates that the software should work on Windows, Linux, and Macintosh operating systems. The following softwares are required for all the operating systems:

- Python-3.3.0
- numpy-MKL-1.7.0
- scipy-0.12.0.dev
- matplotlib-1.2.0
- PyQt4-4.10-gpl-Py3.3-Qt4.8.4.

MinGW development environment must be installed on Windows operating system, to support the external C-written components of the software.

3 Information about the Testing

The test cases in Chapters 4–12 are organized and written according to the requirements specification [1] and the project plan [2]. Chapter 13 includes the non-implemented requirements.

The purpose of Table 3.1 is to summarize information about the test execution including the date and the time, the operating system, the software version and the testing data. This information ensures that the test can be identified later on.

Date and Time:	
Testers:	
Operating System:	
Version of the application:	
Testing data:	
Notes:	

Table 3.1: Information about the Testing.

4 Test Cases for Project Management

4.1 Creating a New Project

Test Case	Result	Notes
1. Create a new project using Cre-		
ate a new project button.		
2. Create a new Project using the		
command in the file menu.		
3. Create a new Project using tool-		
bar image button.		
4. A project name can be specified		
while creating a new project.		
5. User cannot create an unnamed		
project.		

Table 4.1: Creating a New Project.

4.2 Creating a New Measurement

Test Case	Result	Notes
1. Create a new measurement us-		
ing Create a new Measurement		
button.		
2. Create a new measurement us-		
ing the command in the file menu.		
3. Create a new measurement us-		
ing the toolbar button New Mea-		
surement.		

Table 4.2: Creating a New Measurement.

4.3 Opening an Existing Project and an Existing Measurement

Test Case	Result	Notes
1. User can open an existing mea-		
surement using Open an Existing		
Project button.		
2. User can open an existing mea-		
surement using the command in		
the file menu.		
3. User can open an existing mea-		
surment using the toolbar button.		

Table 4.3: Opening an Existing Project and an Existing Measurement.

4.4 Opening, Saving and Managing a Measurement

Test Case	Result	Notes
1. By default the project is saved in		
the users' document directory.		
2. The project is saved in a logical		
folder structure.		
3. The project can include multiple		
measurements.		
4. Several measurements can be		
opened into the sample collection		
as tabs.		
5. User can remove a measurement		
if the project includes more than		
one measurements.		
6. User can remove the only mea-		
surement from a project.		

Table 4.4: Opening, Saving and Managing a measurement.

5 Test Cases for ToF-E Histogram

5.1 Graph Functionalities for ToF-E Histogram

Test Case	Result	Notes
1. The histogram data point count		
in a pixel is displayed via logarith-		
mic coloring as a default.		
2. The histogram data point count		
in pixel can be displayed via linear		
coloring.		
3. The cursor coordinates are		
shown when hovering over the		
graph.		
4. User can drag the histogram		
when the pan button is enabled.		
5. When pan button is enabled the		
bins of the histogram axes can be		
specified by a non-negative integer.		
6. User can zoom the histogram		
when the zoom button is enabled.		
7. User can save histogram as an		
image file by pressing the save but-		
ton.		

Table 5.1: Graph Functionalities for ToF-E Histogram.

5.2 Element Selection

Test Case	Result	Notes
1. The last node of an open selec-		
tion can be cancelled.		
2. The element selection is shown		
with borders.		
3. User can manually load an ele-		
ment selection from a selection file.		
4. The element selection is auto-		
matically saved into selection file		
when a the selection is added, re-		
moved or modified.		
5. User can remove selections.		

Table 5.2: Element Selection.

5.3 Element Selection Settings

Test Case	Result	Notes
1. The element selections are saved		
in a cut file for each element speci-		
fied with a type (ERD/RBS), an el-		
ement mass, a weight factor and		
data points.		
2. User can highlight the selection		
when Select element button is en-		
abled.		
3. User can save the element cuts		
from using right side ribbon view		
element.		
4. User can save the cut files from		
the mouse menu which is opened		
with the right mouse button.		

Table 5.3: Element Selection Settings.

6 Test Cases for ToF-E Graph Settings

6.1 ToF-E Sample Settings

Test Case	Result	Notes
1. An element uses an efficiency		
file if such exists.		
2. User can select an element.		
3. User can select standard atomic		
mass for an element.		
4. User can select an isotope.		
5. User can select the measure type		
between ERD and RBS.		
6. User can input a number value		
into the weight factor field.		
7. User cannot input text into the		
weight factor field.		

Table 6.1: ToF-E Sample Settings.

6.2 **RBS Settings**

Test Case	Result	Notes
1. When RBS type is selected user		
can select scatter elements.		

Table 6.2: RBS Settings.

6.3 Colour Settings

Test Case	Result	Notes
1. The periodic table is color-coded		
(automated color selection).		
2. User can select manually ele-		
ment colors.		

Table 6.3: ToF-E Coloring Settings.

6.4 ToF-E Graph Axis Settings

Test Case	Result	Notes
1. User can change the bins of the		
X-axis and Y-axis.		
2. User can invert X-axis and/or Y-		
axis of the histogram.		
3. User can transpose histogram		
axes (i.e. switch X-axis and Y-axis).		

Table 6.4: ToF-E Graph Axis Settings.

6.5 ToF-E Graph Histogram Coloring Settings

Test Case	Result	Notes
1. 2. User can change data color		
scheme of the histogram.		
3. User can apply new color set-		
tings.		
4. The changes to ToF-E graph set-		
tings do not apply by clicking the		
cancel button.		

Table 6.5: ToF-E Graph settings.

7 Test Cases for Project Settings

7.1 Loading and Saving Measurement Settings

Test Case	Result	Notes
1. User can load existing measure-		
ment setting in the project settings		
window.		
2. User can save new measurement		
settings in the define project set-		
tings window.		

Table 7.1: Loading and Saving Measurement Settings.

7.2 Beam Settings

Test Case	Result	Notes
1. User can select a beam element.		
2. User can select an isotope for the		
beam element.		
3. User can modify the value of the		
energy.		
4. User can enter a number value in		
the beam energy field.		
5. User cannot enter text into beam		
energy field.		

Table 7.2: Beam Settings.

7.3 Measurement Unit Settings

Test Case	Result	Notes
1. User can add a number value to		
Detector angle field.		
2. User cannot enter text into De-		
tector angle field.		
3. User can add a number value		
into Target angle field.		
4. User cannot enter text into Tar-		
get angle field.		
5. User can add a number value		
into Time of Fligth length field.		
6. User cannot enter text into Time		
of Fligth length field.		
7. User can add a number value		
into Carbon foil thickness field.		
8. User cannot enter text into the		
Carbon foil thickness field.		
9. User can add a number value		
into Target density field.		
10. User cannot enter text into Tar-		
get density field.		

Table 7.3: Measurement Unit Settings.

7.4 Depth Profile Settings of the Project

Test Case	Result	Notes
1. User can load existing depth		
profile settings.		
2. User can name and save the		
depth profile settings.		
3. User can add a number value		
into Analysis depth input field.		
4. User cannot enter text into Anal-		
ysis depth input field.		
5. User can add a number value		
into Bin width field.		
6. User cannot enter text into Bin		
width field.		

Table 7.4: Depth Profile Settings of the Project.

7.5 Concentration Scaling Settings

Test Case	Result	Notes
1. User can add a number value		
into From field of the concentration		
scaling.		
2. User cannot add a text value		
into From field of the concentration		
scaling.		
3. User can add a number value		
into To field of the concentration		
scaling.		
4. User cannot add a text value into		
To field of the concentration scal-		
ing.		

Table 7.5: Concentration Scaling Settings.

7.6 Calibration Parameters of the Project

Test Case	Result	Notes
1. User can load existing values for		
the calibration parameters.		
2. User can name and save the cali-		
bration settings.		
3. User can excecute TOF calibra-		
tion.		
4. User can add a number value		
into Slope field.		
5. User cannot enter text into Slope		
field.		
6. User can add a number value		
into Offset field.		
7. User cannot add a text value into		
Offset field.		
8. User can set new project settings		
by pushing Apply or OK button.		
9. Project settings are not changed		
if the cancel button is pushed.		

Table 7.6: Calibration Parameters of the Project.

8 Test Cases fot Time of Flight Calibration

8.1 Fitting Tab in Time of Flight Calibration

Test Case	Result	Notes
1. User can select project's cut file		
and determine the position of the		
front edge of the histogram created		
from the data of the cut files.		
2. User can select project's cut file		
and determine the position of the		
front edge manually when Select		
the point manually button is en-		
abled.		
3. User can change Bin width		
value.		
4. User can accept position of the		
front edge by clicking Accept point		
button.		
5. User can exit time of flight ca-		
libration view by clicking cancel		
button without accepting new val-		
ues of the parameters.		

Table 8.1: Fitting tab in Time of Flight Calibration.

8.2 Calibration Tab in Time of Flight Calibration

Test Case	Result	Notes
1. User can remove one or more		
cut files from the Select Accepted		
Points area.		
2. When calibration is carried out		
user can confirm calibration results		
by clicking Accept calibration but-		
ton.		
3. User can exit time of fligth ca-		
libration view without saving by		
clicking the cancel button.		

Table 8.2: Calibration Tab in Time of Flight Calibration.

9 Test Cases for Defining Measuring Unit for the Active Measurement

9.1 Active Measuring Common Settings

Test Case	Result	Notes
1. Use project settings values		
checkbox is enabled as default.		
2. When user disables project de-		
fault settings he/she can change		
the measuring settings.		
3. User can load measuring set-		
tings.		
4. User can save the measuring set-		
tings.		

Table 9.1: Unit Settings for Active Measurement.

9.2 Beam Settings

Test Case	Result	Notes
1. User can select a beam element.		
2. User can selet an isotope for the		
beam element.		
3. User can add a number value		
into Energy field.		
4. User cannot add a text value into		
Energy field.		

Table 9.2: Beam Settings.

9.3 Measuring Unit Settings

Test Case	Result	Notes
1. User can add a number value		
into Detector angle field.		
2. User cannot add a text value into		
Detector angle field		
3. User can add a number value		
into Target angle field.		
4. User cannot add a text value into		
Target angle field.		
5. User can add a number value		
into Time of Flight length field.		
6. User cannot add a text value into		
Time of Fligth length field.		
7. User can add a number into Car-		
bon foil thickness field.		
8. User cannot add a text value into		
Carbon foil thickness field.		
9. User can add a number into Tar-		
get density field.		
10. User cannot add a text value		
into Target density field.		
11. User can set settings by clicking		
Set settings button.		
12. When user clicks Cancel button		
the new settings do not apply.		

Table 9.3: Measuring Unit Settings.

9.4 Defining Depth Profile Settings.

Test Case	Result	Notes
1. Use project settings values		
checkbox is enabled as default.		
2. User can load depth profile set-		
tings.		
3. User can save the depth profile		
settings.		
4. User can add a number value		
into Analysis Depth field.		
5. User cannot enter text value into		
Analysis Depth field.		
6. User can add a number value		
into Bin Width field.		
7. User cannot add a text value into		
Bin Width field.		
8. User can add a number value		
into From field in Concentration		
scaling.		
9. User cannot add a text value into		
From field in Concentration scal-		
ing.		
10. User can add a number value		
into To field in Concentration scal-		
ing.		
11. User cannot add a text value		
into To field in Concentration scal-		
ing.		
12. User can set setting by clicking		
Set setting button.		
13. When user clicks Cancel button		
the new settings do not apply.		

Table 9.4: Define Depth Profile Settings.

9.5 Defining ToF-E Calibration Parameters

Test Case	Result	Notes
1. Use project settings values		
checkbox is enabled as default.		
2. User can load existing calibra-		
tion parameters.		
3. User can save the calibration pa-		
rameters.		
User can execute calibration by		
clicking execute calibration button.		
4. User can add a number value		
into Slope field.		
5. User cannot add a text value into		
Slope field.		
6. User can add a number value		
into Offset field.		
7. User cannot add a text value into		
Offset field.		
8. User can set settings by clicking		
Set setting button.		
9. When user clicks Cancel button		
the new settings do not apply.		

Table 9.5: Define ToF-E Calibration Parameters for the Active Measurement Settings.

10 Test Cases for Analysing Elemental Losses

10.1 Target Cut Files Selection

Test Case	Result	Notes
1. Elemental losses divide a target		
cut file into the specified partition		
using a reference cut file (heavier		
element).		
2. All the cut files enabled will be		
displayed in Target cut files list.		
3. Multiple target cut files can be		
shown in the graph at the same		
time.		
4. User can select one or more cut		
files from the target cut file list.		
5. User can manually choose the		
reference cut file using the com-		
bobox.		
6. User can enter a number value		
into the split field.		
7. User cannot enter text into the		
split field.		
8. User can scale Y-axis either min-		
max or zero-max.		
9. When user clicks the apply or		
OK button, the new Axis setup is		
set.		
10. When user clicks the cancel		
button the new Axis settings are		
not set.		

Table 10.1: Target Cut Files Selection.

10.2 Elemental Losses Graph Options

Test Case	Result	Notes
1. The cursor coordinates are		
shown when hovering over the		
graph.		
2. User can drag the histogram		
when the pan button is enabled.		
3. When the pan button is enabled		
the bins of the histogram axes can		
be specified by a non-negative in-		
teger.		
4. User can zoom the histogram		
when the zoom button is enabled.		
5. The elemental losses can be		
saved manually into new par-		
tioned cut files with Save splits		
button.		

Table 10.2: Elemental Losses Graph Options.

11 Test Cases for Energy Spectrum

11.1 Creating a New Energy Spectrum Graph

Test Case	Result	Notes
1. User can create an energy spec-		
trum by clicking Create energy		
spectrum ribbon view.		
2. User can add a number value		
into the histogram width field.		
3. User cannot enter text value into		
the histogram width field.		
4. User can select cut files into the		
measurement list.		
5. When user clicks OK button the		
new energy spectrum is drawn.		

Table 11.1: Create a New Energy Spectrum Graph.

11.2 Energy Spectrum Graph Options

Test Case	Result	Notes
1. The cursor coordinates are		
shown when hovering over the		
graph.		
2. User can drag the histogram		
when the pan button is enabled.		
3. When the pan button is enabled		
the bins of the histogram axes can		
be specified by a non-negative in-		
teger.		
4. User can zoom the histogram		
when the zoom button is enabled.		
5. User can save the energy spec-		
trum figure by clicking Save the		
figure button.		

Table 11.2: Energy Spectrum Graph Options.

12 Test Cases for Depth Profile

12.1 Create Depth Profile Cut Files in the Measurement

Test Case	Result	Notes
1. All the cut files can be disabled		
in the cut files in the measurement		
list.		
2. User can select one or more cut		
files from the target cut file list.		
3. User can choose X-axis units ei-		
ther as nm or at/cm ^{2} .		

Table 12.1: Create Depth Profile Cut Files in the Measurement.

12.2 Depth Profile Graph Functionalities

Test Case	Result	Notes
1. The X-axis ticks are rounded to		
integers (i.e. no decimals).		
2. The relative and absolute view		
of X-axis in the depth profile can be		
changed.		
3. The cursor coordinates are		
shown when hovering over graph.		
4. The depth distribution of the		
depth profile is shown on the		
graph outside the grid.		
5. User can drag the histogram		
when the pan button is enabled.		
6. When the pan button is enabled		
the bins of the histogram axes can		
be specified by a non-negative in-		
teger.		
7. User can zoom the depth profile		
histogram when the zoom button		
is enabled.		
8. User can save the depth profile		
figure by clicking Save the figure		
button.		
9. User can integrate the selected		
depth ratio of elements when the		
toggle selection is enabled.		
10. User can toggle the view of the		
horizontal line when the selection		
is enabled.		

Table 12.2: Depth Profile Graph Functionalities 1/2.

Potku Project	System Testing Plan 1.0.0	Public
11. User can scale ev 100 % when relative		
lection is enabled.		
12. User can norma	alize Y-axis of	
the depth profile ov	er the selected	
depth.		

Table 12.3: Depth Profile Graph Functionalities 2/2.

13 Non-Implemented Requirements

13.1 Specifying Measurement Data

Test Case	Result	Notes
1. The software reads a .lst file (bi-		
nary) provided by a conversion		
(similar to Finlandia).		
2. The software reads a standard-		
ized XML format.		

Table 13.1: Specifying Measurement Data.

13.2 ToF-E Histogram

Test Case	Result	Notes
1. The histogram data point count		
in a pixel can be displayed via lin-		
ear coloring		
2. The histogram axes functions		
can be specified manually.		
3. A starting point of element can		
be automatically estimated		
4. The event count in a pixel is dis-		
played when hovering over with		
the cursor.		

Table 13.2: ToF-E Histogram.

13.3 Element Selection in ToF-E Histogram

Test Case	Result	Notes
1. Element selection can be high-		
lighted by moving the cursor over		
selection.		
2. A node in an element selection		
can be removed.		
3. An element selection can be		
composed from several selections		
utilizing Booles operation.		

Table 13.3: Element Selection in ToF-E Histogram.

13.4 Element

Test Case	Result	Notes
1. An unstable element isotope can		
be chosen.		

Table 13.4: Element.

13.5 ToF Calibration

Test Case	Result	Notes
1. Cut files from outside the project		
can be specified for the calibration.		
2. Additional values of calibration		
parameters can be saved to a cali-		
bration file.		
3. Other saved calibrations can be		
chosen to be used.		
4. The previous calibration can be		
shown in the linear fit.		

Table 13.5: ToF Calibration.

13.6 Elemental Losses

Test Case	Result	Notes
1. An energy spectrum from a cut		
file can be generated.		

Table 13.6: Elemental Losses

13.7 Depth Profile Logic

Test Case	Result	Notes
1. Stopping model of depth pro-		
file's can be chosen.		
2. The margin of error can be dis-		
played (none / automatic / man-		
ual) in the log.		
3. In depth profile count of ele-		
ments' data points can be shown at		
the selected depth.		

Table 13.7: Depth Profile Logic

13.8 Depth Profile Graph

Test Case	Result	Notes
1. Text and font of Graph's can be		
changed.		
2. The depth at which Y-axis is nor-		
malized can be specified from the		
graph.		

Table 13.8: Depth Profile Graph

13.9 Project Management

Test Case	Result	Notes
1. Master measurement can be		
used to carry out analyzation on		
multiple measurements at the		
same time.		
2. Upon opening a project, the soft-		
ware loads the current stage from a		
Python file.		

Table 13.9:	Project Management.
14010 10.00	1 reject managementer

13.10 Python Interpreter Interface

Test Case	Result	Notes
1. GUI saves as a command log the		
process of a sample collection in a		
python file.		
2. A series of commands issued in		
GUI can be rerun through inter-		
preter.		

Table 13.10: Python Interpreter Interface.

13.11 Reporting

Test Case	Result	Notes
1. A report includes the selected		
histograms in the project.		
2. A report includes the selected		
depth profiles in the project.		
3. A report includes the selected in-		
tegrations of the selected depths in		
the depth profiles.		
4. A report includes the values of		
the parameters specified for the		
graphs.		
5. A report includes files in Gnu-		
plot/GLE format.		

Table 13.11: Reporting.

13.12 Additional Functionalities

Test Case	Result	Notes
1. Show ratio between selected cut		
files .		
2. The software can be extended		
with plugins.		
3. The software plugin can convert		
data to read other formats.		
4. The software plugin can do		
Monte-Carlo simulation.		

Table 13.12: Additional Functionalities.

14 References

- Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli ja Raunio Miika, "Potku-projektin vaatimusmäärittely", Jyväskylän yliopisto, tietotekniikan laitos, 2.5.2013.
- [2] Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli ja Raunio Miika. "Potku-projektin projektisuunnitelma", Jyväskylän yliopisto, tietotekniikan laitos, 18.4.2013.