
Potku Project
Jarkko Aalto
Timo Konu

Samuli Kärkkäinen
Samuli Rahkonen

Miika Raunio

Application Report

Public
Version 0.3.0

21.5.2013

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Approved by Date Signature Clarification

Project manager __.__.2013

Customer __.__.2013

Instructor __.__.2013

Potku Project Application Report 0.3.0 Public

Document Info

Authors:
• Jarkko Aalto (JA) jarkko.t.aalto@student.jyu.fi

• Timo Konu (TK) timo.j.konu@student.jyu.fi

• Samuli Kärkkäinen (SK) samuli.p.p.karkkainen@student.jyu.fi

• Samuli Rahkonen (SR) samuli.p.j.rahkonen@student.jyu.fi

• Miika Raunio (MR) miika.o.raunio@student.jyu.fi

Document name: Potku Project, Application Report
Page count: 43

Abstract:
Potku project developed an user interface software application for analyzing data
received from a recoil spectrometer. The application receives ascii-format list data
from the spectrometer. Using the data, the application can draw a time-of-flight
over energy histogram (ToF-E histogram), and has further analysis tools based on
selections done in the ToF-E histogram. This document describes the backgrounds
of the application as well as presents the user interface and the structure of the appli-
cation. The programming and testing practices are also presented. The realization
of the functional requirements and other agreed upon objectives is given, as well as
advice for future development.
Keywords: Application structure, future development, meeting the requirements,
programming practices, Python, Qt, recoil spectrometer, testing, user interface.

i

Potku Project Application Report 0.3.0 Public

Project Contact Information

Project group:
Aalto Jarkko jarkko.t.aalto@student.jyu.fi

Konu Timo timo.j.konu@student.jyu.fi

Kärkkäinen Samuli samuli.p.p.karkkainen@student.jyu.fi

Rahkonen Samuli samuli.p.j.rahkonen@student.jyu.fi

Raunio Miika miika.o.raunio@student.jyu.fi

Customers:
Sajavaara Timo timo.sajavaara@jyu.fi 040-8054114
Laitinen Mikko mikko.i.laitinen@jyu.fi 0400-994836
Julin Jaakko jaakko.julin@jyu.fi 040-8054097
Arstila Kai kai.arstila@iki.fi –

Instructors:
Itkonen Jonne jonne.itkonen@jyu.fi –
Santanen Jukka-Pekka santanen@mit.jyu.fi 040-8053299
Tuovinen Tero tero.tuovinen@jyu.fi 050-4413685

Contact information:
Email lists potku@korppi.jyu.fi

potku_opetus@korppi.jyu.fi

Email archives https://korppi.jyu.fi/kotka/servlet/

list-archive/potku/

https://korppi.jyu.fi/kotka/servlet/

list-archive/potku_opetus/

ii

Potku Project Application Report 0.3.0 Public

Version History

Version Date Modifications Modifiers

0.0.1 25.4.2013 The report template was created. MR
0.0.2 29.4.2013 First drafts of introduction and terminology

chapters were written.
MR

0.0.3 30.4.2013 First draft of background chapter was written. MR
0.0.4 3.5.2013 First draft of application structure chapter was

written.
MR

0.0.5 5.5.2013 First draft of programming practices chapter
was written.

MR

0.1.0 7.5.2013 First drafts of user interface and testing prac-
tices chapters were written.

MR

0.1.1 8.5.2013 First drafts of realization of objectives, guide
for future developers and summary chapters
were written. Improved user interface and test-
ing practices chapters.

MR

0.1.2 13.5.2013 Small fixes across the document based on in-
structor Santanen’s feedback were made.

MR

0.2.0 15.5.2013 Interface, application structure, programming
practices and testing chapters were improved.

MR

0.2.1 16.5.2013 Small fixes across the document based on
Kärkkäinen’s feedback were made.

MR

0.2.2 17.5.2013 Proofreading and fixes across the document
were made.

MR

0.2.3 20.5.2013 Fixes across the document were made accord-
ing to Santanen’s feedback.

MR

0.3.0 21.5.2013 Testing results were written. MR

iii

Potku Project Application Report 0.3.0 Public

iv

Potku Project Application Report 0.3.0 Public

Contents

1 Introduction 1

2 Terminology 2
2.1 Target Area and Application . 2
2.2 Software and Techniques . 3

3 Background and Goals 5

4 User Interface of the Application 7
4.1 Main Window Structure . 7
4.2 Starting Potku . 9
4.3 Creating a Project . 9
4.4 Loading a Measurement and Making Cuts 10
4.5 Defining Settings . 13
4.6 Time-of-Flight Calibration . 15
4.7 Generating a Elemental Losses Histogram 16
4.8 Generating a Energy Spectrum Histogram 18
4.9 Generating and Analyzing a Depth Profile 19

5 Application Structure 23
5.1 Components and Software . 23
5.2 Structure . 24
5.3 File and Data Formats . 25
5.4 Integration of External C Components 27

6 Programming Practices 29
6.1 Formatting, Naming and Commenting Practices 29
6.2 Source Code Example . 30
6.3 Grouping Practices . 32
6.4 Development Platform . 32

7 Testing Practices and Results 34
7.1 Unit and Integration Testing Practices 34
7.2 System Testing Practices . 34
7.3 Usability Testing Practices . 35
7.4 Testing Results . 35

v

Potku Project Application Report 0.3.0 Public

8 Realization of Objectives 37
8.1 Realization of Requirements . 37
8.2 Unsatisfactory Solutions in the Implementation 37
8.3 Challenges During the Implementation 38

9 Guide for Future Developers 40
9.1 Essential Bugs . 40
9.2 Improvements of Existing Features . 40

10 Summary 42

11 References 43

vi

Potku Project Application Report 0.3.0 Public

1 Introduction

The research team of accelerator-based material physics at Department of Physics
of University of Jyväskylä use a accelerator to collide a projectile beam with a sam-
ple thin film, which causes element particles from the sample to be ejected. The
research team uses a recoil spectrometer to collect information on the particles that
were ejected from the sample. The data contains the time-of-flight and energy of
each particle the spectrometer detected. To analyze this data, they need a software
application, which was developed by the Potku project in the spring of 2013.

The application can draw the data points received from the spectrometer into a his-
togram, allow the user of the application to select chemical elements from the his-
togram, and use the selected elements to produce elemental losses histograms, en-
ergy spectrum histograms and depth profile histograms. Most mathematical calcu-
lation necessary for some tools of the application is done by external C components
provided by the customer.

The developed application was named Potku, after the name of the project itself.
Potku software was developed to work under Windows, Linux and Mac operating
systems, and was programmed using Python 3.3 programming language. Potku
software uses a few external analyzation programs programmed in C, that were
developed by the customers.

Documents were written during the project to describe the developed software and
the project. The requirements specification [1] contains the full list of requirements
set for the application. The realization of the goals and the practises are described
in the project report. Kuvatus Project Application Report [2] was used in compiling
this document.

In Chapter 2 the essential terminology used in this document is defined. Chapter 3
describes the backgrounds and the goals of the project. In Chapter 4 the user inter-
face is presented and the essential functionality of the application is demonstrated.
The structure of the application is described in Chapter 5. The used programming
practices and a sample of the code are presented in Chapter 6. Chapter 7 reports
the carried out testing and the results. The realization of objectives set for the appli-
cation is described in Chapter 8. Finally, Chapter 9 contains recommendations and
suggestions from the project team for future development of the application.

1(43)

Potku Project Application Report 0.3.0 Public

2 Terminology

The chapter explains the essential terminology used in the document.

2.1 Target Area and Application

Accelerator laboratory is a laboratory operating in the Department of Physics
at the University of Jyväskylä. The research team of
material physics works in the laboratory, and uti-
lizes ion beams to research the composition of ma-
terials.

Chemical element is an atomic particle with a certain number of pro-
tons in it’s nucleus. Elements are listed in the pe-
riodic table of elements, in which the elements are
arranged according to the number of their protons.

Depth profile visualizes the amounts of elements in the thin film
as a function of depth.

Elemental losses are events, in which the amount of certain elements
in a sample are less after the experiment than before
the experiment.

Finlandia is the software application, that the research team
is currently using to analyze the data received from
the recoil spectrometer. Finlandia utilizes compo-
nents written by Kai Arstila.

Ion is an atom with an electric charge, because of an un-
even amount of electrons and protons.

Isotope is a variation of an element with different amount of
neutrons in it’s nucleus.

Project is a collection of different measurements, in which
there may be numerous experiments done to a sam-
ple with different parameters.

2(43)

Potku Project Application Report 0.3.0 Public

Recoil spectrometer is a research device used by the research team. It
is used to collide ion beams from the Pelletron ac-
celerator with a sample, which will eject ions from
the sample. The time-of-flight and energy are mea-
sured.

Recoiled ion is a particle that has been ejected from the sample,
and is detected by the ToF-E telescope (ERD).

Sample is a thin film often cultivated over silicon, which
could be for example aluminum oxide Al2O3.

Scattered ion is part of the ion beam launched from the acceler-
ator, which has collided with the sample and scat-
tered towards the Tof-E telescope.

Thin film is the material under research. Materials analyzed
in a same project may have been for example created
in different temperatures. The thickness of the film
is typically between 10–300 µm.

Time-of-flight calibration is a procedure which transforms the time-of-flight
received from the channels to seconds or nanosec-
onds.

ToF-E histogram is an abbreviation of Time of Flight - Energy his-
togram. In the histogram, recoiled and scattered
ions are demonstrated as data points with the func-
tions of time-of-flight and energy. In the histogram,
concentrations spectrums of different elements are
often called "bananas".

2.2 Software and Techniques

C is a programming language. The external analyzation components
written by Kai Arstila and Jaakko Julin called in the application are
written in C.

3(43)

Potku Project Application Report 0.3.0 Public

Eclipse is a integrated development environment for different program-
ming languages. The project team used Eclipse for writing the
source code of the application.

Egit is a Git extension for Eclipse, which enables using Git from within
Eclipse.

Git is a distributed revision control software for managing source code
and documents.

Matplotlib is a graphical library for plotting two dimensional graphs for Python.

NumPy is a Python extension, which enables the usage of large, multidi-
mensional arrays.

PyDev is Eclipse extension, which enables Python programming in Eclipse.

PyDoc is a tool for the automatic generation of class documentation from
Python classes.

PyQt is a Python binding for the graphical user interface toolkit Qt. PyQt
is used for creating the graphical user interface of the application.

Python is the primary programming language used in the development of
the application.

SciPy is a Python extension, which enables the usage of various mathe-
matical algorithms.

YouSource is a WWW-based source code release system. YouSource supports
Git revision control.

4(43)

Potku Project Application Report 0.3.0 Public

3 Background and Goals

In Department of Physics of University of Jyväskylä operates an accelerator lab-
oratory, which researches accelerator-based physics. In the accelerator laboratory
operates a research team of accelerator-based material physics. The research team
researches the composition of materials by accelerating an ion beam from the Pel-
letron accelerator. The beam collides with a sample of a material, and ejects particles
from it. These particles are detected by a recoil spectrometer. The time-of-flight and
energy of each particle is detected, which can be used for analysis. An individual
measurement lasts for hours and can produce several million lines of data. Research
samples are usually provided by a customer, who wants to find out the composition
of some material. For instance, a jewelry company could deliver samples to the
research team taken from a silver trinket to be analyzed. The setup of the recoil
spectrometer is demonstrated in Figure 3.1

Figure 3.1: Basic setup of recoil spectrometer

In the figure 3.1 incident MeV heavy ion is the ion beam launched from the accelerator.
It will collide with sample in angle α. Particles will recoil from the sample in angle φ.
The recoiled particles pass through carbon foil detectors T1 and T2, that will measure
the time-of-flight of particles. Finally, the E detector will measure the energy of the
particles

There are several utilities analysis. ToF-E histogram plots each data point received
from the recoil spectrometer as a function of time-of-flight and energy. Each chemi-
cal element tends to form a mass in the histogram, which can be marked for further
analysis. Elemental losses can be analyzed to find out how much the amount of
each element in the analysis has reduced. An energy spectrum can be calculated to
analyze distribution of elements by energy and yield of each element. With a depth

5(43)

Potku Project Application Report 0.3.0 Public

profile the concentration of elements can be analyzed in different depths of the sam-
ple. Each of these utilities have their set of tools which aid the analysis process.

The research team currently has an application named Finlandia, which they can
use to analyze the data received from the recoil spectrometer. It is functional and
produces valid data for the most time, but there are some known bugs and short-
comings. The research team decided that producing a new application from the start
would be a better option than continuing the development of Finlandia’s source
code. The research team contacted the Department of Mathematical Information
Technology for an user interface application to replace Finlandia, and enable easier
further development. The application came to be developed as a Student Software
Project named as Potku.

The major shortcoming with Finlandia is that the code is poorly documented and
difficult to develop further. Basic functionalities however work and there aren’t
major drawbacks with user interface either. So Finlandia could be used for reference
of correct functionality, and inspiration could be drawn from it’s GUI for the user
interface of Potku application. After further development the research team intends
to publish the application to the scientific community.

6(43)

Potku Project Application Report 0.3.0 Public

4 User Interface of the Application

The user interface of Potku was developed using PyQt GUI libraries and Matplotlib
plotting libraries. In Section 4.1 the main window structure of Potku is introduced,
while the rest of the sections will introduce the functionalities of Potku with more
detail.

4.1 Main Window Structure

The main window structure of Potku is presented in Figure 4.1. In the figure, multi-
ple analyzation tools have been activated, so that the full main window interface is
enabled.

Figure 4.1: Potku main window

There are four distinct components:

1. Menus and top toolbar contain all the functionalities of Potku.

2. Workspace contains all the histograms that Potku generates.

7(43)

Potku Project Application Report 0.3.0 Public

3. Left sidebar contains buttons to global and project settings, and the project man-
ager. It can be hidden with the small button next to it.

4. Right sidebar contains buttons for all the major the major analysis tools. Is
enabled only when a measurement has been loaded into the project. It can
be hidden with the small button next to it.

Within these components there are several tools:

A. Global settings contains settings that will affect all the projects loaded in Potku.

B. Project settings contains settings that will only affect the current project. These
settings are only enabled when a project is loaded.

C. Project manager lists all the measurements loaded into the project.

D. Measurement settings contains settings regarding the measurement. The settings
defined here can be used to override the corresponding parts in the project set-
tings.

E. Depth profile settings contains settings regarding the depth profile. The settings
defined here can be used to override the corresponding parts in the project set-
tings.

F. ToF calibration settings contains settings regarding the time-of-flight calibration.
The settings defined here can be used to override the corresponding parts in the
project settings.

G. Element selection enables the element selection tool in the ToF-E histogram.

H. Save cuts saves the cut files defined in the ToF-E histogram.

I. Elemental losses opens the elemental losses analyzation tool.

J. Energy spectrum opens the energy spectrum analyzation tool.

K. Depth profile opens the depth profile analyzation tool.

8(43)

Potku Project Application Report 0.3.0 Public

4.2 Starting Potku

When Potku opens, the interface (Figure 4.2) is significantly less busy than in Figure
4.1. The user essentially has three options: 1) defining global settings, 2) loading
an existing project, and 3) creating a new project. Option 1 is demonstrated later in
Section 4.5, option 2 is a quite self-explanatory file dialog for opening an existing
saved project. Option 3 as demonstrated in Section 4.3.

Figure 4.2: The main window with nothing loaded yet

4.3 Creating a Project

To create a new project the user can click the big button in the workspace or from
the toolbar menu File command New Project. A dialog in Figure 4.3 opens and asks
for a name for the project as well as a directory to which the project is created. Once
the user clicks the Create button, a project is created and the user is returned to the
main window, where Project Settings button has been enabled, and the buttons in
the workspace have been replaced by a Create a new measurement button.

9(43)

Potku Project Application Report 0.3.0 Public

Figure 4.3: Create a new project dialog

4.4 Loading a Measurement and Making Cuts

To load a new measurement, the user can use the large button in the info window
that is shown when a new project is created, or from menu File the command New
Measurement. This opens a file dialog that accepts an asc-file.

Once the file has been loaded, a new Tof-E Histogram is generated and shown in the
workspace as shown in Figure 4.4.

Figure 4.4: A loaded measurement with no selections.

10(43)

Potku Project Application Report 0.3.0 Public

The tools of ToF-E Histogram are as follows:

A. Reset original view returns the graph to the original zoom level and position.

B. Back/Forward to next view, if the user has zoomed multiple times on the graph,
these buttons will allow switching between these zoom levels.

C. Drag the graph.

D. Zoom in on the graph.

E. Save an image file of the graph.

F. Select element area allows the user to select elements from the histogram.

G. Undo last point removes the previous node selected with tool F.

H. Select element selection selects an element selection done with tool F.

I. Delete selected selection delete an selection selected with tool H.

J. Delete all selections deletes all the selections in the histogram.

K. Load selections opens a file dialog to open a file containing existing set of selec-
tions to be used in the loaded ToF-E histogram.

L. Save cuts saves element selections to cut files.

Tools A–E are provided by Matplotlib and were not developed by the project team.
These buttons are common to all the graphs generated by Potku. Tools F–L were
developed by project team and are unique to the ToF-E histogram.

To select elements from the histogram, the user has to equip the Select element area
tool either from the right sidebar or from histogram window toolbar. With the tool
the user will set selection nodes with the left mouse button, and complete a selection
with the right mouse button or by clicking the first node again with the left mouse
button. Once a selection is completed, ToF-E Selection Settings dialog opens as shown
in Figure 4.5. In the dialog, the user can select the element of the selection, the
isotope of said element, a weight factor, whether the element is RBS or ERD and the
color used for the selection.

Graph settings can be opened by right-clicking anywhere in the graph as seen in
Figure 4.5. This settings dialog contains several options to modify the axes as well

11(43)

Potku Project Application Report 0.3.0 Public

Figure 4.5: Selection settings and graph settings dialogs.

as the option to switch the histograms color scheme between the default colors and
two version of grayscale.

During the selection of a cut area, the user can cancel previous nodes by clicking
Undo last point button. The user can select completed selections with the Select el-
ement selection tool and re-edit their settings or delete them either with the Delete
selected selection and Delete all selections buttons. Additionally, the user can load ex-
isting selections from a file via the Load selections button. Once the user is content
with the selections, she can save the selections into cut files with the Save cuts but-
ton. Cut files are used in further analysis. A histogram with complete selections is
shown in Figure 4.6.

12(43)

Potku Project Application Report 0.3.0 Public

Figure 4.6: A loaded measurement with selection of four elements.

4.5 Defining Settings

There are three types of settings regarding the measurement in Potku. Global set-
tings, which affect all the projects. Project settings, which affect only a single project
and all the measurements within that project. Measurement settings, which affect
only a single measurement.

Global settings contains the parameters to set up the default directory for new
projects and the default colors to be used for different elements when they are se-
lected from a ToF-E histogram. Global settings can be accessed from the left sidebar.
The settings window is shown in Figure 4.7.

Project settings contains several parameters regarding the used equipment during
the experiment. Project settings can be accessed from the left sidebar. This settings
window is shown in Figure 4.8.

Measurement settings essentially contains essentially the same settings as project
settings. The purpose of measurement settings is to override parts of the project
settings in a single measurement, while leaving the project settings intact for the
rest of the measurements in the project. Measurement settings can be accessed from

13(43)

Potku Project Application Report 0.3.0 Public

Figure 4.7: Global settings dialog.

Figure 4.8: Project settings dialog

the right sidebar.

14(43)

Potku Project Application Report 0.3.0 Public

4.6 Time-of-Flight Calibration

The user can perform time-of-flight calibration from the Calculate ToF Calibration
button in the project settings. This will open a dialog with two tabs: fitting and cal-
ibration. First, the user has to perform curve fitting on the fitting tab (Figure 4.9).
Potku will attempt to automatically calculate the front edge of each cut, but the
user can also manually set the edge with the pen tool. The curve fitting graph can
also be replotted with the bin width, which can result in a more sensible automatic
fit. When the user finds a satisfactory fit, she clicks the Accept point button. Curve
fitting is done for each cut individually.

Figure 4.9: Fitting tab.

Once the user has accepted a point from each cut to be used in calibration, she can
switch to the calibration tab (Figure 4.10). In this tab Potku will attempt to do a linear
fit between the points accepted in the previous tab. Some of the points may not be
satisfactory (in this demonstration, silicon did not quite fit), so ’bad’ points can be
removed from the calibration in the element list on the left. One the user has found a
satisfactory fit, she can click the Accept calibration button, which will return the user
back to the project settings dialog in Figure 4.8.

15(43)

Potku Project Application Report 0.3.0 Public

Figure 4.10: Calibration tab.

4.7 Generating a Elemental Losses Histogram

To generate a histogram to analyze elemental losses, user can click the Elemen-
tal losses button on the right sidebar (see Figure 4.2), or from toolbar menu Tools
command elemental losses. Cut files have to exist to generate a elemental losses his-
togram.

Dialog in Figure 4.11 opens. The dialog contains the cut files that can be included
in the histogram, a combobox where a reference cut file has to be chosen, a textbox
where it must be defined how many splits the cut files are split into, and radio
buttons for selecting the scale of the Y-axis. Once the user hits the OK button, an
elemental losses histogram in Figure 4.12 is generated with the given parameter
values.

To generate split cut files, the user can click the Save splits button below the his-
togram. Each split file contains the specified portion of the cut file from which it is
derived. Split files can later be used like the cut files from which they are derived
from.

16(43)

Potku Project Application Report 0.3.0 Public

Figure 4.11: Elemental losses dialog.

Figure 4.12: An elemental losses histogram

17(43)

Potku Project Application Report 0.3.0 Public

4.8 Generating a Energy Spectrum Histogram

To generate a histogram for analyzing energy spectrums, the user can click either
the Energy spectrum button on the right sidebar or from menu Tools command Create
Energy Spectrum. This opens a dialog in Figure 4.13, in which all the cut files that can
be used are listed in a check list, as well as the option to set the bin width of axes.
Cut files have to exist to generate an energy spectrum. Clicking the OK button will
generate the histogram in Figure 4.14 with given parameters.

Figure 4.13: Energy spectrum dialog.

18(43)

Potku Project Application Report 0.3.0 Public

Figure 4.14: An energy spectrum histogram.

4.9 Generating and Analyzing a Depth Profile

To generate a depth profile, the user can click the Depth profile button on the right
sidebar or from menu Tools command Create Depth Profile. A dialog inFigure 4.15
open, where the user can select the cut files to be included in the depth profile as
well as the units used in the X-axis. Cut files have to exist to generate a depth
profile. Clicking the OK button will generate and show the depth profile with the
given parameters as seen in Figure 4.16.

The tools unique to the depth profile are as follows:

A. Limit setting sets the limits for calculating percentages of elements.

B. Area selection determines the areas affected by tool C.

C. View toggles between absolute and relative plotting of the depth profile data.

Clicking the view button will toggle between an absolute view and relative view. In
absolute view, data points are plotted according to their actual values. In relative
view, data points are scaled to the total value of all the selected elements, which

19(43)

Potku Project Application Report 0.3.0 Public

Figure 4.15: Depth profile dialog.

Figure 4.16: A depth profile.

ensures that the total amount of elements does not at any point exceed 100 percent.
A depth profile in relative view is demonstrated in Figure 4.17.

With limit setting tool, the user can set the range in the histogram, from which the

20(43)

Potku Project Application Report 0.3.0 Public

Figure 4.17: A depth profile in relative view.

percentages of elements in the legend are calculated. The limits set will remain even
after the tool is deselected. A depth profile with a custom range set is demonstrated
in Figure 4.18.

The limit setting tool also enables the area selection button. This button has three
modes: 1) The entire histogram is selected (default). 2) Only the area within the
set limits is selected 3) Only the areas outside the set limits are selected. The view
button will only affect the areas that are selected with this button. If for instance
the button is set in mode 3, only the areas outside of the set range will be plotted
relatively when the user hits the view button, while the area within the range will
still be plotted with actual values. Usage of this button is demonstrated in image
4.19

21(43)

Potku Project Application Report 0.3.0 Public

Figure 4.18: A depth profile with a custom range.

Figure 4.19: A depth profile with only areas outside of set range plotted relatively.

22(43)

Potku Project Application Report 0.3.0 Public

5 Application Structure

The chapter descibes the different components in Potku application and their re-
lations to each other. Potku is a workstation application. The application uses
Python’s own libraries, the GUI libraries of PyQt, the plotting libraries of Mat-
plotlib, the mathematical libraries of NumPy and SciPy, and external C components
tof_list, erd_depth, carbon_stopping and zbl96.

5.1 Components and Software

Potku uses several existing Python libraries to achieve certain functionalities. In
addition to these, several C programs provided by the customer are also integrated
into Potku.

carbon_stopping is a program that calculates the stopping of elements against
carbon. This component is necessary for performing ToF cal-
ibration.

erd_depth is a program that calculates the amount of elements at certain
depths from the data generated by tof_list. This compo-
nent is necessary for generating depth profiles. The usage of
erd_depth is further documented in document [3].

Matplotlib is a library for plotting different histograms. In Potku, the
library was used for the plotting of the ToF-E histogram, el-
emental losses histogram, energy spectrum histogram, and
ToF fitting and calibration histograms.

Numpy and SciPy mathematical libraries were used for some math-
ematical operations.

PyQT is a Python binding for the GUI library Qt. The entire Potku
GUI was developed with PyQt, safe for histograms, which
were plotted with Matplotlib and placed inside Qt widgets.

Python libraries are the standard libraries that come with a Python installa-
tion, and were used for many purposes throughout the Potku

23(43)

Potku Project Application Report 0.3.0 Public

source code. These libraries include re for regular expres-
sions, os.path for managing directories, logging for log-
ging, math for mathematical functions, configparser for
managing configurations, subprocess for invoking the ex-
ternal C components, platform for determining what op-
erating system the application is currently running on, and
csv for importing data from file.

tof_list is a program that calculates the energy of a cut file from time-
of-flight. This component is necessary for creating energy
spectrums and depth profiles. The usage of tof_list is further
documented in document [3].

zbl96 is a program that calculates stopping of particles, when they
hit a material. This component is necessary for creating en-
ergy spectrums and depth profiles, and for performing ToF
calibration.

5.2 Structure

The structure of the the application is roughly presented in Figure 5.1.

Two interfaces were planned for Potku: graphical and Python interpreter -based.
The interpreter interface was however not entirely implemented. All the utilities
require information from Measurement and Cut Files. External programs are called
by Energy Spectrum, Depth Profile and ToF Calibration utilities.

More detailed documentation of the structure of Potku is documented in the Potku
class documentation [9].

24(43)

Potku Project Application Report 0.3.0 Public

Figure 5.1: The structure of Potku.

5.3 File and Data Formats

Potku uses proprietary data formats with the exception of the screenshots produced
by Matplotlib widgets, which produce picture files in standard formats such as png,
pdf and svg.

A cut file is produced for each selected element from the ToF-E histogram, and it
contains all the events of one of those selections. The naming convention of the file is
[Measurement].[Isotope][Element].[Id].cut. For example, vetya_kalvossa.12C.0.cut.
The meanings of these fields are as follows:

Measurement is the name of the measurement file.

Isotope is the isotope of the selected element.

Element is the symbol of the selected element.

25(43)

Potku Project Application Report 0.3.0 Public

Id is the unique identifier of the element, that is used if there are
multiple selections of the same element in the ToF-E histogram.

The content of a cut file consists of two parts: metadata and a two dimensional
array. The length of the metadata is 10 lines and it contains parameters necessary
for some functionalities. The metadata is of the following format:

Count: 4866

Type: ERD

Weight Factor: 1.0

Energy: 0

Detector Angle: 0

Scatter Element: None

Element losses: False

Split count: 1

ToF, Energy, Event number

The size of the content array is 3× n, where n is the count of data points within the
selection of the cut file. The content of the array is explained in Table 5.1.

ToF Energy Event number

1663 1614 9
1620 1854 27

...
...

...
1580 1799 126514

Table 5.1: Example data content of a cut file.

Elemental Losses tool can save split files that very similar to cut files. In fact, a split
file contains a 1/n portion of the source cut file’s data content, where n is the amount
of split files created from the source cut file. The naming convention is a bit differ-
ent: [Measurement].[Isotope][Element].[Id].[SplitId].cut. For ex-
ample, vetya_kalvossa.12C.0.3.cut. SplitId is a unique identifier given to
split files. Rest of the fields serve the same purpose as in cut files.

26(43)

Potku Project Application Report 0.3.0 Public

5.4 Integration of External C Components

Most of the mathematical calculation in the application is carried out with tof_list
and erd_depth to handle. tof_list calculates energies for cut files based on the
time-of-flight. This data serves as input for erd_depth and energy spectrum. The
format of the data generated by tof_list has been demonstrated in Table 5.2

Det. A Det. B Energy Elem. Mass Event type Weight Event num.

0.0 0.0 2.34176 6 12.0000 ERD 3.000 9
0.0 0.0 2.46176 6 12.0000 ERD 3.000 27
...

...
...

...
...

...
...

...
0.0 0.0 3.24498 14 27.9769 ERD 1.000 126568

Table 5.2: Example content of tof_list output.

External component erd_depth produces output files from which depth profiles
are calculated. The naming convention of these files is depth.[Element], where
[Element] is the symbol of the element. For example, depth.Si. In addition,
erd_depth always creates a depth.total file. The content of these files is explained
in Table 5.3.

Depth (1e15 at./cm2) Unknown Depth (nm) Atomic percentage Unknown

-285.000 -1.914 -4.785 0.00000 0.00000e+00
-255.000 -1.864 -4.659 0.00000 0.00000e+00

...
...

...
...

...
1185.000 37.722 94.304 0.65255 2.45400e+28

Table 5.3: Example content of a depth file.

Note the two columns with title Unknown. The meaning of these two columns is cur-
rently not known, and they are not utilized in any way in the source code developed
during the project.

Late into the project, external C component carbon_stoppingwas also integrated
into Potku. This component calculates stopping data of elements against carbon,
and is necessary for the ToF calibration.

27(43)

Potku Project Application Report 0.3.0 Public

For calculating stopping of particles when they hit a material, all three aforemen-
tioned C programs use zbl96. These programs call zbl96 by themselves, and it is
not called from the Python code.

28(43)

Potku Project Application Report 0.3.0 Public

6 Programming Practices

Preliminary coding began soon after the project team had been introduced to the
research team’s current software, Finlandia. Source code was from the start written
with Python 3.3. Any test prototypes that the project team wrote throughout the
project were also written in Python 3.3, which made the integration of those codes
into the master code easy.

One of the basic goals of the project was to keep the source code as readable as
possible to enable further development of the application after the project. Through
the project, there were two source code review events, in which the technical advisor
Jonne Itkonen shared his notices and advice about the source code.

Internet resources were used in solving programming problems throughout the
project, including the official Python 3.3 documentation [5].

6.1 Formatting, Naming and Commenting Practices

Potku followed the standard formatting and guidestyle of Python 3 [4]. Names
of variables were written entirely lowercase with underscores symbolising spaces.
Names of methods followed the same naming convention. An exception to these
conventions were the variables automatically generated by PyQt, since PyQt follows
the C style CamelCase. All classes were named with CamelCase as well. Names of
variables and objects were kept as self-explanatory as possible. For any modifica-
tions on external C codes, the style used in those codes were followed.

Each Python module contains function or method specific commentary, and possi-
bly line or block -specific explanations to help understand the purpose of the said
code region. Function or method specific commentaries include the purpose of the
function or method, explanation of the arguments it takes, and a explanation of what
it returns.

It was agreed that an indentation would always be four whitespaces. Uniform in-
dentation is especially important in Python, since grouping in Python is often deter-
mined by indentation. An uneven indentation would cause problems when trying
to run the code. Any function calls that had overly long parameter lists were spread
across multiple lines to spare horizontal space and ease readability.

29(43)

Potku Project Application Report 0.3.0 Public

All the variable names, function names and class names were written in English, as
was all the documentation. Like all the documentation of the project, the author of
each source code file was credited as the entire project team in alphabetical order.

Each source code file was to use a three step version numbering practice similar to
the other documentation of the project. This however did not happen, and instead
each file is version 1.0, which was automatically generated for each new source file
by Eclipse.

6.2 Source Code Example

The following source code example is taken from file Modules/Element.py. The
example demonstrates the naming, commenting and formatting practices followed,
as well as unit testing.

coding=utf-8

’’’

Created on 10.4.2013

’’’

__author__ = "Jarkko Aalto \n Timo Konu \n Samuli Kärkkäinen

\n Samuli Rahkonen \n Miika Raunio"

__versio__ = "1.0"

import re

class Element:

def __init__(self, element, isotope=None):

’’’Inits element class.

>>> test_a = Element("1H")

>>> test_b = Element("H")

>>> test_c = Element("H", 1)

>>> test_d = Element("Ca", 40)

>>> test_e = Element("")

>>> test_f = Element("H1")

30(43)

Potku Project Application Report 0.3.0 Public

>>> test_a.to_string()

’1H’

>>> test_b.to_string()

’H’

>>> test_c.to_string()

’1H’

>>> test_d.to_string()

’40Ca’

>>> test_f.to_string() # Suppose we ignore numbers or

whatever after element.

’H’

’’’

if element:

m = re.match("(?P<isotope>[0-9]{0,2})

(?P<element>[a-zA-Z]{1,2})",

element.strip())

if m:

self.name = m.group("element")

if isotope:

self.isotope = Isotope(isotope)

else:

self.isotope = Isotope(m.group("isotope"))

else:

raise ValueError("Incorrect string given.")

else:

self.name = element

self.isotope = Isotope(isotope)

def to_string(self):

’’’Transform element into string.

Return:

Returns element and its isotope in string format.

’’’

return "{0}{1}".format(self.isotope.to_string(),

self.name)

31(43)

Potku Project Application Report 0.3.0 Public

def get_element_and_isotope(self):

’’’Get Element’s name and isotope.

Return:

Returns element’s name (string) and its isotope

(class object).

’’’

return self.name, self.isotope

6.3 Grouping Practices

Since it was intended that the application could be used from a command line, it
was intended that functional logic and UI of the application would be in separate
classes. The classes are spread to packages according to their purpose: Dialogs
contains the classes that act as the dialogs of the application. Modules contains
classes that form objects. Widgets contains classes that form widgets to be used
with PyQt.

Since so many tools of the application use Matplotlib, the MatplotlibWidget was
split into several separate child classes to maintain a bearable line count.

6.4 Development Platform

For programming the Python source code, the project team used Eclipse with the Py-
Dev extension. Modification of external C source codes was done with each project
member’s text editor of choice (usually Notepad++ on Windows, Nano on Linux
and Mac) and compiling was done with GCC.

For development, the project team had four Windows workstations and one Linux
workstation. Programming was mostly done on the Windows workstations and the
Linux platform was mostly for system testing. The project team received a Mac
workstation couple of weeks before the end of the project as well, but it was used
mostly for system testing purposes as well.

32(43)

Potku Project Application Report 0.3.0 Public

Source code is encoded in UTF-8. Version control was handled with YouSource,
which uses Git.

33(43)

Potku Project Application Report 0.3.0 Public

7 Testing Practices and Results

The testing practices were planned originally in the project plan [7]. The chapter
describes the realization of these practices and the results of testing.

7.1 Unit and Integration Testing Practices

The project team members programmed a simple prototype of a new feature, before
writing a class to integrate in the master. Unit testing was planned to the methods
and functions, that return values. Though not all functions and methods that could
be unit tested however were not unit tested as was planned. Since most of the calcu-
lations required by Potku are done in external C programs, these aren’t unit tested
by the project team either.

Each new class added into the project was integration tested as they were being
written. Once the integration was satisfactory, the new module could was pushed
into the Potku repository.

7.2 System Testing Practices

One of the requirements of Potku was that it would work on Windows, Linux, and
Mac operating systems. Thus it had to be system tested on all these platforms. Full
system testing plan can be found in the Potku System Testing Plan [8].

If a test case would fail during a system test, the system test would be carried out
again in full at a later time, after the necessary fixes had been done. This was to
ensure that a fix in one portion of the program would not break some other portion
of the program.

For most of the programming, the project team used Windows, and Windows test-
ing could be done as source code was written. Once Potku worked satisfactorily on
Windows, it could be tested on Linux and Mac platforms which the application was
not programmed in.

Mac system testing came very late in the project, since there was trouble in acquiring
a Mac computer for testing purposes and installing the necessary software on it. A

34(43)

Potku Project Application Report 0.3.0 Public

suitable Mac was prepared eventually, and the project team could carry out the Mac
system testing.

7.3 Usability Testing Practices

While usability testing wasn’t formally planned in the project plan, it inevitably
happened as Potku was developed. The usability of Potku was tested by the project
team, the instructor in charge, and the representatives of the customer. In addition,
usability expert Meeri Mäntylä commented on the usability during the usability day
that was held on April 10th.

It was intended in the project plan [7] that the project team would produce two
releases of Potku for the organization to test. This however did not become re-
ality. Instead, new or improved functional source code was uploaded to Potku’s
repository’s master branch nearly on daily basis, from where anyone in the project
organization could download the latest version of the application.

The usability and features were discussed in the weekly/bi-weekly project meet-
ings. During the meetings, the project team would demonstrate the new implemen-
tations developed since the previous meeting on a laptop in which the latest version
was installed. In addition to these demonstrations, the customer did test the soft-
ware on their own too.

7.4 Testing Results

Systems tests were done in Linux and Mac on several occasions by Aalto. During
each of these system tests, the result of each test case was noted. During each of
these tests, the external C programs were also compiled. Each of these system tests
revealed some bugs in the software, such as incorrect appearance of the user inter-
face and problems in running external C programs.

The last system test took place on 21.5.2013. All platforms fully passed the system
test. There was a handful of faults that would be commonly revealed in the previous
system tests. These faults have been fixed and are:

• User interface would appear ’squashed’ which severely hindered the usage of
Potku, especially the more compact dialogs.

35(43)

Potku Project Application Report 0.3.0 Public

• External C programs would not compile as they were received from the cus-
tomer. This resulted in failed test cases for energy spectrum, depth profile and
ToF calibration.

• Buttons would not have any functionality attached to them. This was often
the case with toolbar buttons, and OK and Cancel buttons.

During the last system test, there was a strange corruption error in tof_list. This
was probably caused by compilation, since the source code or the makefile had not
been modified in a while, and the program has worked in previous runs.

Other bugs have been noted outside of system testing and are listed in the e-mail
archive. Many of them were pointed out by instructor Santanen during his two test
runs on 30.4.2013 and 8.5.2013.

36(43)

Potku Project Application Report 0.3.0 Public

8 Realization of Objectives

The chapter describes the objectives set to Potku, and how well they were met. Ma-
jor functionalities that were not implemented at all were the command prompt user
interface and the reporting tools. The chapter also describes certain implementa-
tions that were done, but the project team thinks the implementation is not done in
best way possible.

8.1 Realization of Requirements

In the Potku requirements specification [1], 83 requirements were specified. Each
requirement was given a priority depending on how essential it is to the customer.
These priorities were mandatory (marked as 1), important (2), possible (3), idea (4),
and will not be implemented (5). Mandatory requirements were essential to the
program and took priority on the project, while priority 4 and 5 were never intended
to be implemented during the project.

Of the 83 requirements defined in the requirements specification, 50 have been been
implemented. Of the priority 1 requirements 43 of 45 implemented or partly im-
plemented. Of the priority 2 requirements 4 of 16 were met. Of priority 3 require-
ments 4 of 17 were met. As intended, none of priority 4 or 5 requirements have
been implemented. Entirely unimplemented priority mandatory requirements are
the following:

1.7 Depth profile’s stopping model can be chosen. It was intended that zbl96 stop-
ping model would be only temporarily used and it would later be replaced with
another. However, due to time constraints a replacement stopping model could not
be integrated into Potku.

1.11 GUI produces (command log) process of sample collection in a python file.
Not implemented due to time constraints.

8.2 Unsatisfactory Solutions in the Implementation

While solutions selected by the project team are functional, some of them aren’t done
in the best possible way. During further development, refactoring these solutions

37(43)

Potku Project Application Report 0.3.0 Public

should be considered.

Getting output from the external C components should be done more gracefully
than simply calling their executables-+ with subprocess.call. Using this method
is vulnerable to any system policies that are forced on running executables.

Modules/DepthFiles.py should be rewritten as a proper object or only as a col-
lection of functions necessary for depth profiles. As is, DepthFiles.py is a strange
mixture of a very small object used for calling the external C programs to generate
depth files, and a collection of functions related to operating depth profile data.

8.3 Challenges During the Implementation

Many of the challenges faced during the project were related to integrating the ex-
ternal C programs into Potku. These programs were originally written in Linux,
and compiling them on Windows was not entirely without problems. Some modifi-
cations had to be made to enable the same C source codes to be compiled with the
same Makefiles on Windows, Linux and Mac.

Another issue was the output format of erd_depth. erd_depth outputs a file for
each element it analyzes, but it does not save the information about the isotope of
the file in any way. This is not an issue, as long as only one isotope of an element
is being analyzed at a time, but multiple isotopes of the same element would cause
problems when generating depth profiles, that do require erd_depth’s output.

Some compromises had to be made on the GUI that was developed on Windows.
When tested on Linux and Windows, several parts of the GUI that would appear
as planned on Windows, appeared incorrectly on the other operating systems. To
correct Potku GUI on the other operating systems, it had to be made less compact
than planned.

Another issue came late in the project, when ToF calibration was being implemented.
ToF calibration required data from an external C program carbon_stopping. Com-
piling this program was again not entirely without problems on Windows and Linux.

Since no-one in the project team had extensive knowledge on Python, or the selected
libraries, there were occasional minor problems in understanding them. Although
these were often easily remedied by the extensive documentation of the language,
and the instructions of the technical instructor.

38(43)

Potku Project Application Report 0.3.0 Public

The subject (accelerator-based material physics) was also very alien to the project
team. This issue was however well-remedied with close contact to the customer as
well as the possibility to draw inspiration from an existing application.

39(43)

Potku Project Application Report 0.3.0 Public

9 Guide for Future Developers

The customer has decided that Potku will go through further development after the
project. In the chapter are several tips for the future developers of the software,
so that the most critical issues may be attended to as soon as possible. For more
detailed list of open issues, please see the Requirements Specification [1].

9.1 Essential Bugs

There are some known bugs in Potku that hinder it’s usage. The following bugs
should be prioritized when the application enters further development.

• Depth profiles is prone to failing, if the project settings are not properly con-
figured. It fails because erd_depth will crash, if it receives invalid values as
parameters.

• Depth profiles will fail, if there are multiple selections of the same element.
This is because the output files of erd_depth lose the information of what cut
file they were generated from.

• When measurements are deleted in a project, their data is not properly erased
from memory. This is a memory leak that could hog extensive amounts of
memory in prolonged use of Potku. Some measures have been taken against
this issue, but it remains unsolved.

Known bugs of lesser priority are listed in section 7.4.

9.2 Improvements of Existing Features

Although the source codes of the external C programs should compile on any Mac,
Linux and Windows with MinGW, it might be better to include separate compiled
versions of the programs for all three operating systems. As is, a compiled Windows
executable of each external C program is included, but compiled programs for Mac
and Linux are not.

40(43)

Potku Project Application Report 0.3.0 Public

When loading a project, Potku does not remember what previous graphs were gen-
erated, as it does not save information about any energy spectrums, elemental losses
or depth profiles that were generated in a project. All the graphs have to be regen-
erated each time.

The usage of logger is is not widely implemented in Potku. In further develop-
ment the usage could be extended to modules where it is not yet properly imple-
mented.

41(43)

Potku Project Application Report 0.3.0 Public

10 Summary

Potku project developed a user interface software for the analyzation of data re-
ceived from a recoil spectrometer. The customer of the project was the research
team of accelerator-based material physics in Department of Physics in University
of Jyväskylä. Of the mandatory requirements, 43 of 45 were implemented or partly
implemented, and all requirements not implemented were left for further develop-
ment outside the project.

The user interface consists of several tools used for the analysis of data received
from the recoil spectrometer. The major tools are ToF-E histogram, ToF calibration,
elemental losses, energy spectrum and depth profile. The software is suitable for
limited use, but does require further development.

Potku application was developed using the PyQt GUI library, Matplotlib plotting li-
brary, and numpy and scipy mathematical libraries. Some of the application’s icons
are from from The Reinhardt Icon Set [6] licensed under LGPL.

Potku application relies on the functionality of the C programs delivered by the
customers. For correct operation of Potku, it is recommended that these programs
are compiled when the application is installed to a new platform.

The application was once reviewed by a usability expert and the source code was
reviewed twice by the technical instructor of the project. The application was tested
with ad hoc, unit, integration and system testing. Further development of the soft-
ware is planned to start immediately after the project.

42(43)

Potku Project Application Report 0.3.0 Public

11 References

[1] Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli and Rau-
nio Miika, ”Potku Project Software Requirement Specification”, University of
Jyväskylä, Department of Mathematical Information Technology, 20.5.2013

[2] Iso-Ahola Pekka, Perttola Jussi and Tuovinen Tommi, ”Kuvatus Project Appli-
cation Report”, University of Jyväskylä, Department of Mathematical Informati
on Technology, 26.4.2012

[3] Sajavaara Timo, ”Analysis with TOF-ERDA at IMEC”, 2004

[4] van Rossum Guido and Warsaw Barry, ”PEP 8 – Style Guide for Python Code”,
available at http://www.python.org/dev/peps/pep-0008/, cited at
3.5.2013

[5] Python Software Foundation, ”Python 3.3.1 Documentation”, available at
http://docs.python.org/3/, cited at 3.5.2013

[6] Jensen Dan Leinir Tuthra, ”The Reinhardt Icon Set”, available at
http://leinir.dk/leinir/content/en/Reinhardt+Icon+Set,
cited at 8.5.2013

[7] Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli and Raunio
Miika, ”Potku-sovellusprojekti Projektisuunnitelma”, University of Jyväskylä,
Department of Mathematical Information Technology, 18.4.2013

[8] Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli and Raunio
Miika, ”Potku Project System Testing Plan”, University of Jyväskylä, Depart-
ment of Mathematical Information Technology, 21.5.2013

[9] Aalto Jarkko, Konu Timo, Kärkkäinen Samuli, Rahkonen Samuli and Raunio
Miika, ”Potku Project Class Documentation”, University of Jyväskylä, Depart-
ment of Mathematical Information Technology, 20.5.2013

43(43)

	Introduction
	Terminology
	Target Area and Application
	Software and Techniques

	Background and Goals
	User Interface of the Application
	Main Window Structure
	Starting Potku
	Creating a Project
	Loading a Measurement and Making Cuts
	Defining Settings
	Time-of-Flight Calibration
	Generating a Elemental Losses Histogram
	Generating a Energy Spectrum Histogram
	Generating and Analyzing a Depth Profile

	Application Structure
	Components and Software
	Structure
	File and Data Formats
	Integration of External C Components

	Programming Practices
	Formatting, Naming and Commenting Practices
	Source Code Example
	Grouping Practices
	Development Platform

	Testing Practices and Results
	Unit and Integration Testing Practices
	System Testing Practices
	Usability Testing Practices
	Testing Results

	Realization of Objectives
	Realization of Requirements
	Unsatisfactory Solutions in the Implementation
	Challenges During the Implementation

	Guide for Future Developers
	Essential Bugs
	Improvements of Existing Features

	Summary
	References

