
Verso Project

Application Report

Tero Hänninen
Juho Nieminen
Marko Peltola

Heikki Salo

Version 1.0
Public

14.12.2010

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Acceptor Date Signature Clarification

Project manager __.__.2010

Customer __.__.2010

Instructor __.__.2010

Verso Project Application Report 1.0 Public

Document Info

Authors:
• Tero Hänninen (TH) tejohann@jyu.fi 0400-240468
• Juho Nieminen (JN) juho.nieminen@jyu.fi 050-3831825
• Marko Peltola (MP) marko.peltola@jyu.fi 041-4498622
• Heikki Salo (HS) heikki.ao.salo@iki.fi 050-3397894

Document name: Verso Project, Application Report
Page count: 48

Abstract: Verso project developed a web application for source code management
and releasing. The document goes through the background of the software, presents
the user interface and the application structure and describes the programming and
testing practices used in the project. The realization of functional requirements,
ideas for further development and a guide for future developers are also presented.
Keywords: Application structure, future development, Git, Gitorious, meeting the
requirements, programming practices, Ruby on Rails, software development, source
code management, source code releasing, testing, WWW interface.

i

Verso Project Application Report 1.0 Public

Project Contact Information

Project group:
Tero Hänninen tejohann@jyu.fi 0400-240468
Juho Nieminen juho.nieminen@jyu.fi 050-3831825
Marko Peltola marko.peltola@jyu.fi 041-4498622
Heikki Salo heikki.ao.salo@iki.fi 050-3397894

Customers:
Ville Tirronen ville.e.t.tirronen@jyu.fi 014-2604987
Tero Tuovinen tero.tuovinen@jyu.fi 050-4413685
Paavo Nieminen nieminen@jyu.fi 040-5768507
Tapani Tarvainen tt@it.jyu.fi 014-2602752

Instructors:
Jukka-Pekka Santanen santanen@mit.jyu.fi 014-2602756
Antti-Juhani Kaijanaho antti-juhani.kaijanaho@jyu.fi 014-2602766

Contact information:
Email lists verso@korppi.jyu.fi and

yousource-users.group@korppi.jyu.fi.

Email archives https://korppi.jyu.fi/kotka/servlet/

list-archive/verso/ and
https://korppi.jyu.fi/kotka/servlet/

list-archive/yousource-users.group/.
Workroom AgC 222.2, tel. 014-2604963.

ii

Verso Project Application Report 1.0 Public

Version History

Version Date Modications Modifier

0.0.1 20.4.2010 The report template was created. JN
0.0.2 21.4.2010 The initial table of contents was created and the

introduction was written.
JN

0.0.3 22.4.2010 The background chapter was started. JN
0.0.4 28.4.2010 The background chapter was finished and con-

tents to the user interface chapter were added.
JN

0.1.0 29.4.2010 The user interface chapter was continued. JN
0.1.1 3.5.2010 Typos were corrected and the structure chap-

ter and the programming practices chapter were
started.

JN

0.1.2 4.5.2010 The testing chapter was started. JN
0.1.3 5.5.2010 The appearance of the document was fixed and

the content was modified according to the feed-
back.

JN

0.1.4 6.5.2010 The realization of objectives was started. JN
0.2.0 18.5.2010 Figures were added to the user interface chap-

ter. The background chapter was modified. The
sitemap and metafiles sections were added.

JN

0.2.1 20.5.2010 Figure labels and figures were modified. Terms
were added and clarified. Some text was added
here and there.

JN

0.2.2 24.5.2010 The subsections related to the header and side-
bar were merged into the page structure chap-
ter. The figure on the inner and external inter-
faces was added and content for the chapter was
written. The sections describing system testing
and unsatisfactory solutions in implementations
were written.

JN

0.3.0 26.5.2010 The user interface chapter was modified and
expanded. The programming practices chap-
ter was written and the realization of objectives
chapter was continued.

JN

iii

Verso Project Application Report 1.0 Public

Version Date Modications Modifier

0.3.1 26.5.2010 The references were modified. The testing chapter
was modified and expanded with the testing results
section. The realization of objectives chapter was
continued.

JN

0.3.2 27.5.2010 The realization of objectives chapter and the testing
results section were continued.

JN

0.3.3 28.5.2010 The class structure section was written. JN
0.3.4 31.5.2010 The signatures table was widened. The document

info was added to the document. The chapter on
guide for future developers was written. The sec-
tion on logging in was extended. The figures of You-
Source before and after Verso project were added.

JN

0.3.5 1.6.2010 The chapters on introduction, terminology, back-
ground and application structure were modified.

JN

0.4.0 2.6.2010 The chapters on application structure, user inter-
face, testing practices, programming practices and
realization of objectives were modified. The sum-
mary was started.

JN

0.4.1 8.6.2010 The section on inner and external interfaces was
continued.

JN

0.4.2 16.6.2010 Minor changes here and there were made accord-
ing to the feedback. The summary chapter and
the modifications during the implementation sec-
tion were continued.

JN

0.5.0 17.6.2010 Minor changes were done here and there. The fig-
ures related to the edit repository page, activities
page and manage collaborators page were added.
The references were updated.

JN

0.5.1 1.8.2010 Minor changes here and there were done according
to the feedback. The term crontab was added. Doc-
ument keywords were added.

JN

0.6.0 2.8.2010 Minor changes here and there were done according
to the feedback. The term hook was added. The
section testing results and the chapters on terms and
realization of objectives were continued.

JN

iv

Verso Project Application Report 1.0 Public

Version Date Modications Modifier

0.6.1 8.9.2010 The appearance of the document was improved ac-
cording to the feedback. Minor changes were made
to the content here and there.

JN

0.6.2 9.9.2010 Minor changes were made here and there to the con-
tent.

JN

0.7.0 10.9.2010 Typos and wording were corrected on several chap-
ters.

JN

1.0.0 14.12.2010 A keyword ’meeting the requirements’ was added.
Alternating space between paragraphs was fixed.
The description of the term private project was
rephrased. Typos were corrected and small changes
were made to various parts of the document.

JN

v

Verso Project Application Report 1.0 Public

Contents

1 Introduction 1

2 Terminology 2
2.1 General Terms . 2
2.2 Verso Specific Terms . 3

3 Background 5
3.1 Publishing Channel for Source Codes 5
3.2 Gitorious as a Starting Point . 6

4 User Interface 7
4.1 Sitemap . 7
4.2 Page Structure . 8
4.3 Logging in . 9
4.4 Creating a Repository . 11
4.5 Creating a Mirror Repository . 13
4.6 Repository Browser . 15
4.7 Updating Repository with a Zip Package 16
4.8 Adding Single Files to a Repository . 17
4.9 Private Repository . 18
4.10 Private Project . 19
4.11 Editing of Repository Metafiles . 19
4.12 Usability Modifications to the WWW Interface 20

5 Application Structure 22
5.1 Components . 22
5.2 Inner and External Interfaces . 23
5.3 Class Structure . 24
5.4 Metafiles . 26

6 Programming Practices 27
6.1 Formatting, Naming and Commenting Practices 27
6.2 Source Code Example . 28
6.3 Grouping Practices . 31
6.4 Development Platform . 31

vi

Verso Project Application Report 1.0 Public

7 Testing Practices and Results 32
7.1 Integration Testing Practices . 32
7.2 Usability Testing Practices . 33
7.3 System Testing Practices . 34
7.4 Testing Results . 34

8 Realization of Objectives 37
8.1 Realization of Requirements . 37
8.2 Unsatisfactory Solutions in Implementation 39
8.3 Challenges in Implementation . 40
8.4 Modifications during the Implementation 40
8.5 Further Development Ideas . 41

9 Guide for Future Developers 43
9.1 Essential Bugs . 43
9.2 Improvements to Existing Features . 44
9.3 The Most Useful New Features . 45
9.4 Development Practices . 45

10 Summary 46

11 References 47

vii

Verso Project Application Report 1.0 Public

viii

Verso Project Application Report 1.0 Public

1 Introduction

In a work community, sharing information increases productivity [12]. For this rea-
son Department of Mathematical Information Technology (MIT) at University of
Jyväskylä decided to start developing practices for researchers to share their source
code with each other. The idea was first tried out by Ville Tirronen who tested a
prototype software that did not provide all the functionalities needed by the users.
A need for such a software was still recognized but no free or inexpensive solution
was found. The idea was then proposed for a student project that was starting in
the MIT department.

The project, soon to be known as Verso, developed a web application called You-
Source that enables users to share and maintain version history of their source code.
The software is based on Gitorious, which is a an open source application for host-
ing Git repositories. It was chosen to be the starting point of the development be-
cause it covered the largest amount of requirements compared to the other reviewed
software. Verso project defined, planned and implemented the most essential miss-
ing functionalities to Gitorious. The web application was developed with Ruby on
Rails framework to be run on Linux servers and PCs and viewed by any modern
web browser.

Verso project wrote several documents describing the developed software and the
the project itself. The realization of the goals and the practices are described in the
project report [10]. The usability testing sessions are described in the memos [8]
and [9]. The system testing practices and the test cases are described in [3] and the
results in [4] and [5]. Possible software platforms were compared in the beginning
of the project and the results were reported in [6].

The document describes the implementation of the features described in the require-
ments specification [2]. In Chapter 2 the essential terminology used in the document
is explained. Chapter 3 describes the background of the project. Chapter 4 presents
the user interface of the application concentrating on the parts that were added and
modified in the project. Chapter 5 explains the inner structure of the application.
Chapter 6 specifies the programming practices used during the project and Chap-
ter 7 describes how testing was carried out. In Chapter 8 it is considered how the
objectives set to the application were fulfilled. Finally, in Chapter 9, suggestions on
how to start the further development are presented.

1(48)

Verso Project Application Report 1.0 Public

2 Terminology

The chapter explains the essential terms that appear in the document.

2.1 General Terms

The following terms are related to the software that was developed in Verso project
but they are non-specific and could apply to many other applications as well.

Branch in Git is a pointer to a commit. The current branch deter-
mines where the user’s new commits will go. A branch is
considered as a course of development.

Commit contains file modification data and a log message describing
the changes that are produced by the user .

Crontab is a configuration file for using a program called Cron. Cron
is a time-based job scheduler that can be set to execute shell
commands periodically.

Hook is a piece of software code that handles intercepting function
calls or messages between software components.

Metadata is information about data. It describes the definition, struc-
ture and management of data files.

MVC architecture i.e. Model-View-Controller, is an architectural pattern used
in software engineering. The pattern isolates the application
logic from the input and the presentation, permitting inde-
pendent development, testing and maintenance of each.

Push uploads the new commits in the local repository to a remote
repository. It can be thought as releasing a version of a code
if one is pushing into a public repository.

Ruby on Rails is an open source web application framework for Ruby pro-
gramming language.

2(48)

Verso Project Application Report 1.0 Public

2.2 Verso Specific Terms

The terms below are specific to Verso project and describe some of the key elements
in the developed software.

Owner is able to manage the data of one or many projects which in
turn have one or many repositories. The owner of a project
is also the owner of the repositories in the project. An owner
is allowed to commit to his repositories and modify the data
in his projects and repositories. An owner is a user or a
team.

Private project can only be seen by the owner of the project, the members
of the team that owns the project, and the users that have
view, review, commit or administrate rights to one of the
repositories in the project.

Private repository can only be seen by the users that have view, review, commit
or administrate rights to it.

Project is a user created entity in YouSource which has one or many
repositories. It can have many attributes, for example a de-
scription, a home page URL and keywords. A project is
owned by a user or a team.

Public project is visible to all visitors of the web page.

Public repository is visible to all visitors of the web page.

Repository refers to a Git repository which belongs to a project. It stores
data and the version history of the data. It can have several
attributes, for example a description and a license. A repos-
itory is owned by a user or a team.

Team is a group of users. At least one member in the team has
admin rights and the rest are normal team members.

Viewer can see a repository even if it is marked as private. The
wiewer right is the lowest of the possible rights to a repos-
itory. The others are in order review, commit and adminis-
trate.

3(48)

Verso Project Application Report 1.0 Public

YouSource is the name of the application developed by Verso group.

4(48)

Verso Project Application Report 1.0 Public

3 Background

Verso project was started off from a need for a better way to share source code in-
side a work community and an interest in a prototype software for that purpose.
The chapter goes briefly through the background and the needs of the developed
software as well as what led to starting of Verso project and the development of
YouSource. Also the initial needs are shortly presented.

3.1 Publishing Channel for Source Codes

Currently, at Department of Mathematical Information Technology in University of
Jyväskylä, there is no commonly used practices for storing and releasing source
code. This causes a number of problems. For instance, when a worker leaves the
department all the source code he has developed is often lost too. Poor practices on
communication prevent workers from knowing who is doing what, which may lead
to producing overlapping work. Furthermore, the current disorganized practices
present licensing problems in which one is unaware who owns a piece of source
code and how it can be used.

The challenge and the aim of the department is to get as many employees as possible
to use proper version control. Therefore, a software was needed that can be used in
many different ways to support different users. A WWW interface was needed espe-
cially for the employees and students unfamiliar with version control. A command
line interface was needed for the more experienced. Even features that will adapt
to the current unique working methods of the employees should be implemented,
such as reading and mirroring a zip archive at a supplied URL.

Prior to Verso project there was a prototype that was tested by Ville Tirronen but it
didn’t meet the needs of the users. The task of developing another prototype was
given to Verso project because the department has a clear need of improving the way
the employees share their work. Tirronen was one of the customer’s representatives
and guided the project with his experiences from the previous prototype.

5(48)

Verso Project Application Report 1.0 Public

3.2 Gitorious as a Starting Point

When the key functional requirements for the needed software were put together,
it soon became apparent that software closely fitting for the requirements already
existed. One noted application was GitHub which basically covered all the key
requirements. However, GitHub is not open source and buying it would be too
expensive. More alternatives were reviewed and compared in [6] and finally Verso
group ended up with Gitorious described in [11].

Gitorious is an open source application for hosting projects that use Git. It stores
users’ repositories and provides useful tools to manage them. Gitorious encourages
users to collaborate with each other which gives it a feel of a social networking
website. Other reviewed software that came close to the initial requirements were
FusionForge, InDefero, Savane, Project Kenai, Fedora Hosted and KnowledgeForge.
The disadvantages with these were lack of recent development, difficult repository
creation process, no activity view for repositories and/or limited search functions.

Gitorious had most of the required key features already implemented. It supports
a widely used version control application called Git, it has a WWW interface that
covers most of the key functionalities and all the information about the projects
and repositories is easily obtainable. However, some of the requested features were
missing from Gitorious. It didn’t support private projects or repositories, it didn’t
save project information (metadata) to the repository itself and it didn’t support
any update methods other than Git. All these features were added to YouSource
by Verso group. In addition, the logging in was changed to be similar to the other
services of the university and usability was increased with user interface modifica-
tions.

6(48)

Verso Project Application Report 1.0 Public

4 User Interface

The user interface of YouSource was developed using HTML elements and a cas-
cading style sheet (CSS) file. The general look of Gitorious was left untouched
but almost all the new features needed additions and modifications to the views.
Not only the web pages related to the new features were changed but also minor
changes, such as adding links and changing labels, were made here and there to
improve usability. The chapter describes the user interface changes that were done
to Gitorious by Verso group.

4.1 Sitemap

Figure 4.1: Simplified sitemap of YouSource.

7(48)

Verso Project Application Report 1.0 Public

Since YouSource is based on a fully functional web application called Gitorious it has
a lot of pages. Figure 4.1 shows nearly all the pages and describes their relations.
Not all links are visible to simplify the picture.

The common header and common footer components are present in every page and
provide links to the low level pages of the application. In Figure 4.1, the horizontal
axis displays the relative path of the pages and the vertical axis displays the logical
dependencies between the pages. For instance, a project has many repositories and
a branch has many commits.

In Figure 4.1, the starting page for a logged user is shown to be Home page. However,
for a non logged user the starting page is Activities page (see Figure 9.1) where a lot
of recent site activity is shown. The non logged user can explore the site and visit
public projects and repositories and their subpages but he can not create any new
projects or repositories.

4.2 Page Structure

A general page structure in YouSource consists of five elements: the header, bread-
crumb, main content, sidebar and the footer (see Figure 4.2). The header, footer and
the breadcrumb sections offer navigation and user management.

The header is located at the top of each page and contains the main menu and the
user menu. The main menu contains links to all the main pages of the application
and the user menu contains links to user information and user management. For
users not logged in the user menu contains only a link to the login page.

The breadcrumb navigation is located right under the header but it is not visible
on all pages. It contains the logical path to the currently visible page, for example
project / repository / branch / source tree. The breadcrumb is not visible on the four
main pages Activities, Projects, Repositories and Teams or on the project creation and
the team creation pages.

The main content presents the essential information on the page like the site and
project activities. All the forms that are used in creating and managing projects,
repositories and teams are also shown in the main content area as well as all the
warning and notification messages.

8(48)

Verso Project Application Report 1.0 Public

Figure 4.2: The header, breadcrumb, sidebar, main content and the footer.

The sidebar is visible on most of the pages in the application. It contains additional
information for the main content section and links to management pages.

The footer is located at the bottom of each page. It contains a menu with links to the
informative pages About, FAQ, and Contact. A full view of a page in YouSource that
displays all the elements described in the section is shown in Figure 4.2.

4.3 Logging in

Gitorious uses an email address and password pair for logging users into the sys-
tem. This was considered inconsistent with most of the other web applications in
University of Jyväskylä as they use a username and password pair for logging in.
Therefore, YouSource was changed to use the username too instead of an email.

9(48)

Verso Project Application Report 1.0 Public

One of the main information systems in the university is Korppi, which provides
various kinds of services for students, employees and guests. Korppi also provides
an LDAP authentication interface, and this was used to log users in to YouSource.
The LDAP authentication made it possible to not store user passwords at all to You-
Source, since Korppi already has that information. This led to removing all the
UI elements that handled passwords except for the login page which is shown in
Figure 4.3.

Figure 4.3: The login view.

Gitorious sends an activation email after a new user has registered. This feature
was removed from YouSource since it is not needed because users can’t register
new usernames to the site by themselves. Instead, after the first login the site itself
creates a new user to its database with the provided username, if the username and
password matched the Korppi database.

When a user creates a new account in Gitorious, he must accept the current terms of
service. In YouSource the terms of service were removed because the terms policy
wasn’t clear to the customer at the time. However, since the terms of service might
be used in the future, the user entries in the database have the terms of service
field and it is marked as accepted for the users for now. Therefore, no users who

10(48)

Verso Project Application Report 1.0 Public

logged in to YouSource and had the terms of service accepted for them should be
held accountable for any future terms of service the application might have.

4.4 Creating a Repository

Figure 4.4 displays the form that is used to create a new repository. In Basic infor-
mation section the user specifies the project in which the repository will be created
and the name and the description of the repository. The description is an optional
attribute. Options section lets the user further specify some optional features for the
repository. These are initializing the repository with a local zip file, setting a mir-
ror repository (more of this in Chapter 4.5), marking the repository as private and
enabling merge requests from other users.

The way a user can create a repository has changed a lot from Gitorious to You-
Source. Gitorious offered only one way to create a repository while in YouSource
a user has several ways to do it. A user can initialize the repository with a zip file
uploaded from his computer, or he can set up a mirror repository by providing a
URL to a zip file or an SVN repository. If the user prefers not to use any of these
options, a normal empty repository will be created.

11(48)

Verso Project Application Report 1.0 Public

Figure 4.4: The form for creating a new repository.

12(48)

Verso Project Application Report 1.0 Public

4.5 Creating a Mirror Repository

While creating a repository it is possible to provide a URL that specifies a zip file
or an SVN repository in the Options section of the repository creation form (see Fig-
ure 4.4). This URL is called a mirror URL and it will be stored as an attribute to the
repository. If a URL for a zip file is provided the repository will be created normally
with Git and the contents of the file will be added into it. On the other hand, if the
user selects the SVN mirroring, the repository will be created by cloning the SVN
repository.

If a mirror URL has been specified for a repository, the contents of the zip package or
the SVN repository will be downloaded daily to the repository in YouSource. The
script is scheduled in crontab to run every day at seven o’clock in the morning. It
will go through all the mirror repositories in YouSource and checks if there are any
changes in the source file or in the repository at the mirror URL. The mirror URL
can be changed at any time on the repository edit page (see Figure 4.6) which can be
accessed through the sidebar of the repository page (see Figure 4.5).

Figure 4.5: The Repository page. The image was taken after some of the page styles
were altered.

13(48)

Verso Project Application Report 1.0 Public

Figure 4.6: The Edit repository page.

14(48)

Verso Project Application Report 1.0 Public

4.6 Repository Browser

Gitorious doesn’t offer a listing page for repositories as it does for projects. In You-
Source this was corrected and a page displaying all the public repositories on the
site was created. In YouSource the page is one of the four main pages which are
Activities, Projects, Repositories and Teams.

The Repositories page in Figure 4.7 consists of a list of repositories and a side bar.
The repository list is in the order the repositories are updated (latest first). The list
is divided into pages so that only twenty repositories are shown at once, and the
rest can be viewed through page number links at the bottom of the list. If a user
is logged in, the repositories in which the user has commit rights are highlighted
with a slightly darker background color as is seen in the two first repositories in
Figure 4.7.

In the sidebar there is a list of the most active repositories from the past two weeks
and a list of the user’s own active repositories (if logged in). The sidebar also pro-
vides a link to create a new repository.

Figure 4.7: The repository browser (Repositories page).

15(48)

Verso Project Application Report 1.0 Public

4.7 Updating Repository with a Zip Package

On the repository page (see Figure 4.5) the sidebar contains links to operational
pages related to the repository. The link Update repository with zip leads to a form on
the page presented in Figure 4.8. The form accepts a URL of a zip file or a path to
a local zip file for the update process. In the form the user also specifies the branch
into which he wants the zip file to be pushed (updated). The default branch is the
master branch if that exists. Otherwise, the default is a new branch but the name for
the new branch is suggested as master.

Figure 4.8: The view of updating a repository with a zip file.

16(48)

Verso Project Application Report 1.0 Public

4.8 Adding Single Files to a Repository

Gitorious offers a way to browse the contents of a repository with a source tree view
(see Figure 4.9). At the bottom of the page there was added a small form which
accepts a local file. After sending the form the file will be added to the current
directory shown in the breadcrumb. The file will be added into the branch where the
repository head is currently in. The form also allows updating a file by specifying
an already existing file name in the repository.

Figure 4.9: The form for adding single files to the current branch.

17(48)

Verso Project Application Report 1.0 Public

4.9 Private Repository

A repository can be marked as private (as opposed to public) when the repository is
being created (see Figure 4.4 in Section 4.4) or later on the repository edit page (see
Figure 4.6). A private repository means that it will only be shown to the users who
have view rights to it.

A viewer is a new type of user role that was added into YouSource. The owner of a
repository can modify who can view his repository in Manage Collaborators page (see
Figure 4.10). The view rights can be given to users and teams. Latter will set all the
members of the team as viewers. However, a viewer can only access the repository
page (see Figure 4.5), not the repository data. To access the data, the committer or
administrator right to the repository is required.

Figure 4.10: The Manage Collaborators page.

18(48)

Verso Project Application Report 1.0 Public

4.10 Private Project

Like repositories, projects can be marked as private as well. This can be done when
the project is created (similar to Figure 4.4 in Section 4.4) or later on the project edit
page (similar to the page in Figure 4.6 in Section 4.5). However, projects have a
three step privacy while repositories have two step privacy. A project can be set
to be visible to everyone, visible to users that are logged in or visible only to the
members of the project (see Figure 4.11).

Figure 4.11: The options in creating a private project.

Members can be added and removed on the project members page which can be
accessed through the sidebar on the project page. It should be noted, that a project
is visible to both to the members and to the users who have gained view rights to
one of the repositories in the project. The non-members still can’t view the other
repositories in the project.

4.11 Editing of Repository Metafiles

Not all user interface changes were related to the WWW interface. One improve-
ment was implemented to the use of the command line interface with YouSource.
The repository name, description and the option to allow merge requests are also ed-
itable through the command line interface. This was achieved by adding a branch
called yousource_metafiles to every repository created in YouSource. The
branch contains a plain text file specifying the description and a YML file containing
the other options (see Section 5.4). These files are synchronized with the repository
options so that changes in the mentioned files show up in the repository edit page
(see Figure 4.6 in Section 4.5) and vice versa.

19(48)

Verso Project Application Report 1.0 Public

4.12 Usability Modifications to the WWW Interface

One of the main problems with the prototype software that preceded YouSource
was the user interface. It was not clear enough for the users and it didn’t encourage
employees to use the application. Due to this the customer in Verso project wanted
the user interface of the new software to be developed more user friendly than the
prototype. Partly, this is taken into account in the requirements for features enabling
easier update methods and user logging but usability improvements were needed
also in the build-in features of Gitorious.

Usability issues were discovered in various ways. Verso group found problems on
their own by using the application during the development. Verso group also con-
sulted a usability expert Meeri Mäntylä and got valuable feedback from a couple of
initial users, the instructor Jukka-Pekka Santanen, the usability testing sessions and
from the system testing.

The most notable changes where made to the header and footer from which the
header was totally redesigned. The menu in the header was centered and the user
management links were separated from the main menu. Also, Auri Kaihlavirta sup-
plied a logo, a color theme and a bookmark icon for the website. The new header is
shown in Figure 4.2 in Section 4.2 and for comparison the Gitorious header is shown
in Figure 4.12.

Figure 4.12: Site header of Gitorious when logged in.

YouSource relies on SSH key authentication. Users are asked to upload a public
SSH key before they can make a project. The SSH key generation process proved to
be difficult for inexperienced users during usability testing [9]. For this reason, the
SSH key help was remarkably improved.

The usability testing session, described in [8], brought up another issue concerning
a help box. In Gitorious, when a user creates a new repository, a getting started
message is shown until an initial commit is made to the repository. After that there
is no way to bring the useful getting started message back. In YouSource this was

20(48)

Verso Project Application Report 1.0 Public

corrected so that the getting started button is always shown and the getting started
message can be viewed any time by clicking the button.

Meeri Mäntylä reviewed YouSource and gave instructions to the project group how
to improve the usability of the application. Based on her advice, Gitorious’ term
dashboard (user’s home page) was changed to the term home. Form labels were mod-
ified so that they have a colon at the end (e.g. Project name:). The difference between
a project and a repository was increased by adding a small label on top of the project
and repository names to indicate which one is in question.

Verso group found a few usability flaws in Gitorious during their own use of the
software. The buttons to create a new project and a new repository were added to
project and repository pages respectively. Buttons to delete a project or a repository
were added to their own pages. The confirmation message for deleting a project
was unified with the repository deletion confirmation.

One of the instructors in Verso project, Jukka-Pekka Santanen, tested YouSource
in the final stages of development. He suggested several usability improvements
to the WWW user interface. The Create a new repository page (see Figure 4.4 in Sec-
tion 4.4) in particular was modified to be more self-explanatory based on Santanen’s
feedback. Many other pages too were improved according to his suggestions. To
mention a few, Projects and Repositories pages (see Figure 4.7 in Section 4.6) got a
clarifying hint stating the order of the items listed on the pages. The directory table
in Source tree page (Figure 4.2 in Section 4.2) was supplemented with headings. In
the sidebar of the Repository page the link Repository clones was made to be clickable
only if clones exist.

21(48)

Verso Project Application Report 1.0 Public

5 Application Structure

The chapter describes the different components in YouSource and their relations to
each other. YouSource is mainly a server application because of its web service na-
ture. The application uses Ruby on Rails libraries, MySQL database, UltraSphinx
search engine, Stomp queuing server, Poller daemon to execute the queues, Git dae-
mon for file download service and a few external Ruby libraries (most notably Grit
to handle Git functions).

5.1 Components

Git daemon is a simple server for Git repositories. It uses TCP and listens to a single
port and waits for a connection asking for a service and delivers that service if it is
enabled. Git daemon makes it possible for users of YouSource to push into repos-
itories and clone them with an URL such as git://versotest.it.jyu.fi/-
verso/gitorious.git.

Grit provides object oriented read and write access to Git repositories via Ruby.
YouSource uses Grit in most of its Git operations. Grit was developed to power
GitHub [1], a source code management website very similar to Gitorious.

KorppiLDAP is an authentication and directory access interface. It is used in You-
Source during the login process for authenticating the users with Korppi credentials.

MySQL is a relational database management system. It grants access to YouSource’s
database which stores all the data related to the website such as information related
to users (except passwords), events, projects and repositories.

Poller daemon is a script that is used to execute commands from Stompserver’s
queue. Actions that rely on poller are merge request handling, repository creation,
archiving and deletion, SSH key handling, Git functions and email notifications.
The poller is always running because without it, none of these actions would be
executed.

Ruby libraries are used to perform some specific functionalities that Ruby on Rails
doesn’t provide. In addition to Grit, the most used libraries in Verso project were
Diff:Display to display Git version comparisons, git diffs, elegantly and Vali-

dates-URL-format-of to check the correctness of a user specified URL.

22(48)

Verso Project Application Report 1.0 Public

Ruby on Rails libraries provide the basic functionalities for many classes in You-
Source by inheritance. For instance, the controller classes are inherited from Ac-

tionController class, the model classes are inherited from ActionRecord class
and the processor classes are inherited from ApplicationProcessor class.

Stompserver is a Stomp messaging server with file, database, memory or activere-
cord based first-in-first-out (FIFO) queues, queue monitoring and basic authentica-
tion written in Ruby programming language. YouSource uses the queue for actions
described in Poller daemon.

UltraSphinx is a Ruby on Rails configurator and client to the Sphinx full text search
engine. YouSource uses UltraSphinx for the search in the header of each page. It
provides a text search of many attributes such as project and repository names and
descriptions.

5.2 Inner and External Interfaces

Let us examine the interfaces used in YouSource from inside the application. The
interfaces fall into categories of inner and external as presented in Figure 5.1. Ruby
on Rails libraries and Ruby libraries belong to the inner interfaces and everything
else is an external component. In the figure, the web application represents all the
classes and modules used in YouSource.

Figure 5.1: The components used in YouSource and their relations to each other.

23(48)

Verso Project Application Report 1.0 Public

Examing the interfaces outside from the user’s point of view, the picture looks a
bit different. Interfaces that appear as external for the user are HTTP, SSH and Git.
Nothing else is visible to the user which means all the other interfaces are inner
interfaces.

The external interfaces used in YouSource are the same as in Gitorious except for Ko-
rppiLDAP and Git daemon. KorppiLDAP authentication is handled with a Python
script. sessions_controller.rb receives a username and a password and asks
from the class user.rb if they are a match. user.rb passes the username and
password to the Python script ldapauthenticate.py which handles the LDAP
connection and authentication and returns true or false to indicate whether the au-
thentication was successful or not.

The interface between Git daemon and YouSource was modified so that it checks the
format and existence of the metafiles. Modifying repository metadata through the
Git interface was a new feature developed in Verso project which is done by modi-
fying the metafiles of a repository. When a git push is received the hook data/-
hooks/pre-receive performs checks to the incoming data. For the metafiles, it
uses the class data/hooks/pre_receive_guard.rb to verify if the metadata is
valid. In case of an error, the pre-receive hook rejects the push and displays an
error message.

The alternative update methods (see Sections 4.5, 4.7 and 4.8) developed to You-
Source required more changes to the inner interface between Git and YouSource.
The class repository.rb handles the transactions between the two with an exter-
nal library component Grit if possible, and otherwise directly with command line
execution commands of Ruby. Operations handled with the latter method are up-
dating a repository with a zip package, creating a repository with provided zip pack-
age as well as creating and updating an SVN clone repositry. Updating the metafiles
through the WWW interface and adding a single file to a repository are done with
Grit.

5.3 Class Structure

The class structure of YouSource is presented in Figure 5.2. It shows the Repository
model and the most essential classes related to it. The other models in YouSource
like User, Team and Project, have similar structures. In the figure, the classes

24(48)

Verso Project Application Report 1.0 Public

marked with a light color, ActiveRecord.rb and ApplicationController.rb,
indicate Ruby on Rails base classes. The classes marked with a darker color, such as
Repository.rb and RepositoriesController.rb, indicate classes that were
modified during the project.

The class structure in YouSource is dictated by Ruby on Rails. Rails applications
use the Model-View-Controller (MVC) architecture, which means that classes are
divided into application logic (model), input handling (controller) and data dis-
play classes (view). Besides models, controllers and views, there are processor
classes that handle queued tasks triggered by controllers and helper classes that
help views to process display data. Other types of classes are used from external
libraries.

Figure 5.2: The class structure of Repository class.

Not all models were modified as extensively as Repositorymodel. From the MVC
architecture point of view, most of the modifications were done to the views as us-
ability improvements. Figures 8.1 and 8.2 in Section 8.1 show the most essential

25(48)

Verso Project Application Report 1.0 Public

modifications done to Gitorious in Verso project.

5.4 Metafiles

Verso project developed to YouSource two metafiles for each repository. The meta-
files describe information stored to the repository. The metafiles can describe the
intented use, the content, the usage rights and the users of the repository. In Verso
project however, only three pieces of information were set in the metafiles. A YML
file holds information about the repository name and the possibility to allow merge
requests. Another plain text file holds the repository description. The description
was placed in its own file because it is the longest repository attribute and using the
YML format with it was considered impractical.

The YML format of the file repository.yml is as follows

name: verso-project

merge_requests_enabled: true

A repository description metafile with the file name description can be a follow-
ing one

This repository contains the modified Gitorious that’s used

to run You\-Source.

The metadata of a project can’t be updated via Git because projects are not Git
repositories. The projects’ attributes can only be changed through the WWW inter-
face which makes the changes to the database. As the metadata of projects is saved
to the database, projects don’t have metafiles like repositories do.

26(48)

Verso Project Application Report 1.0 Public

6 Programming Practices

The programming in Verso project started after Gitorious was chosen as a platform
for the development. From the start of the programming, the goal was to develop
code that fits Ruby standards and is similar to the rest of the Gitorious code. During
the project, the code was reviewed two times by the technical instructor Antti-Juhani
Kaijanaho, who gave feedback on the developed code. Any questionable parts of the
code were improved according to Kaijanaho’s advice.

6.1 Formatting, Naming and Commenting Practices

Readability was the main guiding principle while formatting, naming and com-
menting the source code. Verso group followed their own defined formatting prac-
tices which were influenced by the original Gitorious source code. Two whitespaces
were used as an indentation between code blocks. Only one command was written
per line. Long lines were split to several lines using intendation to emphasize the
continuity of the command.

When possible, conditional commands were written using positive logic, such as
the statement unless of Ruby. SQL statements were made simpler by using the
function find of ActiveRecord class of Ruby on Rails.

The naming of methods and variables was kept as self-explanatory as possible. The
idea was to use as much self-explanatory names as possible so only a few clarifying
comments were needed. Multipart names were written with the underline char-
acter between the parts. The class names were an exception and multipart class
names were written together with every part starting with a capital letter. The con-
stants were written with all capital letters. All the names in the code were written
in English.

Commenting was kept minimal. The aim was to keep the code tidy and readable so
that as few comments as possible would be needed. However, when a more com-
plicated code was needed, it was accompanied with a comment explaining the idea.
Commenting was also used when the implemented solution was considered imper-
fect. These parts were marked with FIXME comments to help the future developers
find the problematic areas. Comments were written in English.

27(48)

Verso Project Application Report 1.0 Public

6.2 Source Code Example

Below is an example of source code illustrating formatting, naming and comment-
ing practices used in Verso project taken from repositories_controller.rb

file.

encoding: utf-8

#--

Copyright (C) 2010 Juho Nieminen

<juho.m.a.nieminen@jyu.fi>

Copyright (C) 2010 Tero Hänninen

<tero.j.hanninen@jyu.fi>

Copyright (C) 2010 Marko Peltola

<marko@markopeltola.com>

Copyright (C) 2009 Nokia Corporation and/or its

subsidiary(-ies)

Copyright (C) 2007, 2008 Johan Sørensen

<johan@johansorensen.com>

Copyright (C) 2008 David A. Cuadrado

<krawek@gmail.com>

Copyright (C) 2008 Tor Arne Vestbø

<tavestbo@trolltech.com>

Copyright (C) 2009 Fabio Akita

<fabio.akita@gmail.com>

#

This program is free software: you can redistribute it

and/or modify it under the terms of the GNU Affero

General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at

your option) any later version.

#

This program is distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU Affero General Public

License for more details.

#

28(48)

Verso Project Application Report 1.0 Public

You should have received a copy of the GNU Affero

General Public License along with this program.

If not, see <http://www.gnu.org/licenses/>.

#++

def update_repo_with_zip

@repository =

@owner.repositories.find_by_name_in_project!(

params[:id],

@containing_project

)

@root = Breadcrumb::UpdateRepositoryWithZip.new(@repository)

target_head = ""

if params[:target_head_selector] == ""

target_head = params[:target_head]

else

target_head = params[:target_head_selector]

end

if !params[:local_package_file].blank?

package_file = params[:local_package_file]

temp_dir = Repository.dir_for_temp_zip(

@repository.real_gitdir

)

‘mkdir #{temp_dir}‘

file_path = File.join(temp_dir,

sanitize_filename(

package_file.original_filename)

)

File.open(file_path, "wb") {

|f| f.write(package_file.read)

}

29(48)

Verso Project Application Report 1.0 Public

Repository.update_contents_from_zip(

@repository.real_gitdir,

file_path,

{"source_type" => "local_file",

"target_branch" => target_head}

)

#@repository.project.create_push_event(

@repository,

target_head,

current_user

) # FIXME

redirect_to [@repository.project_or_owner, @repository]

elsif !params[:package_url].blank?

Repository.update_contents_from_zip(

@repository.real_gitdir,

params[:package_url],

{"source_type" => "url",

"target_branch" => target_head}

)

#@repository.project.create_push_event(

@repository,

target_head,

current_user

) # FIXME

redirect_to [@repository.project_or_owner, @repository]

else

render :action => "update_repo_with_zip_form"

end

end

30(48)

Verso Project Application Report 1.0 Public

6.3 Grouping Practices

The source code was divided into different files according to the MVC architecture
and Ruby on Rails practices. For example, the amount of embedded Ruby code was
kept minimal in the view files by processing the information as much as possible in
the corresponding controllers. Likewise, the controllers were kept clean by placing
most of the data processing in the model files. Also, the appearance of the web
pages was developed with a separate style sheet (CSS) file so that the HTML code
would stay simple.

6.4 Development Platform

No single developing platform was used during the project. Each member of the
project used a text editor of his choice to edit the source code. Gedit, Vim and
Notepad++ were the mostly used editors.

The source code uses the UTF-8 character encoding. Version control was handled
with Git and YouSource itself making the project self hosting which was one of the
initial goals.

The browsers Firefox 3.5.9 and Konqueror 4.4.2 were used to test the user interface
and the general functionality of the application. Firebug 1.5.3 plug-in was used
to debug Javascript and CSS. The Ruby on Rails console was used to debug new
features.

31(48)

Verso Project Application Report 1.0 Public

7 Testing Practices and Results

The developed YouSource software was tested during the project by Verso group,
the customers, the instructors, about twelve initial users and two usability test users.
The customers started to use the software as soon as it was set up in the test server.
At that point no modifications were made to Gitorious. The initial users were in-
vited to use the software after the second phase of the development when the first
key features were implemented. The usability tests took place at the third phase of
the development. In total, there were five phases of development.

Verso group tested YouSource constantly during the development. The application
was used for maintaining and keeping the version history of its own source code.
In other words, YouSource was in active and practical use by Verso group during
the whole project. This practice revealed several bugs and usability issues from the
application and also produced new ideas for future development.

All the testing practices used proved to be useful since a lot of errors were dis-
covered. Daily use of the application brought up usability issues and functionality
flaws, the integration testing of new features was crucial in debugging and the us-
ability testing revealed several usability issues in the application as well as brought
up new feature ideas to improve the usability. A couple of errors were also revealed
in the system testing sessions that tested the overall performance of the application.

7.1 Integration Testing Practices

When a new feature was developed, it was instantly tested by its developer on his
work station by putting the feature on its place and testing it in practice. After
the first integration tests were carried out succesfully, a functional feature was then
installed on the test server which was accessible for the group of initial users and
the project organisation. Then the feature was tested again by its developer and at
least one other project member to ensure that it worked well on the test server too.

The tests carried out were based on the functional requirements specified by Verso
group. The functional requirements in turn were based on the needs and the goals
described by the customer. The new features were implemented and tested one at a
time. The most essential implemented functionalities can be seen in Figures 8.1 and
8.2 in Section 8.1.

32(48)

Verso Project Application Report 1.0 Public

No automatic testing was used, although the Ruby on Rails environment supports
it. It was considered too time consuming to learn the testing side of Rails when the
whole Ruby on Rails itself was a bit of a mystery.

7.2 Usability Testing Practices

YouSource’s usability was tested in two usability testing sessions reported in [8]
and [9]. Before the sessions not much had been done to improve the usability of the
application. The focus of development had been on implementing the required new
features. Still, as one of the main ideas behind the project was to encourage more
people to use version control, it was necessary to put effort into usability too.

The usability sessions were carried out by two testers from Verso group and a user
who performed the defined test cases using a laptop with Windows XP operating
system. In the start, the testers asked questions about the background of the user.
Then the user was told to release something on YouSource website. To be more
specific, the test cases were logging in, uploading an SSH key, creating a project,
creating a repository and uploading files to the repository. The user was instructed
to think aloud so that the testers could know what the user was thinking and what
the user was going to do next. The releasing was conducted via Git, and for that the
user was instructed to use Putty to connect to a server called charra.it.jyu.fi

with Git installed.

The both usability testing sessions were conducted very much the same way but the
skills of the users were very different. The first user was an active programmer and
was used to operate with command line interface and version control. The second
user instead was less experienced and not very familiar with SSH keys, Git or Linux
bash. This diversity was good for the usability testing because the sessions brought
up different issues.

The usability of the application was also put to test in the system testing sessions
where all the main functions of the application were tested. More about system
testing is described in Section 7.3.

33(48)

Verso Project Application Report 1.0 Public

7.3 System Testing Practices

The functionalities of the application were tested in two system testing sessions per-
formed by Tero Hänninen. System Testing Plan [3] describes the tests that were
carried out in the sessions and System Testing Reports [4] and [5] discuss the results
of the sessions.

The system test cases included all the features that were developed during Verso
project as well as the most essential features provided directly by Gitorious like
creating a project and a repository. Every test has a set preconditions, test steps and
postconditions that all must pass for the test to pass. The testing reports contain a list
of the performed test cases, the results of each test case and a comment describing
the failures or the observations.

7.4 Testing Results

The daily use and testing of the application by Verso group revealed several issues,
some of which were discovered by accident. The use also brought up improve-
ment ideas for already implemented features. One example of a feature that got
redesigned based on improvement ideas was the possibility to create a project and
a repository simultaneously so that new users would get started with the applica-
tion quicker. The feature was implemented and remained untouched for some time
until problems in error handling started to show up which led to separation of the
project and repository creation. Section 8.4 explains the issue more.

An example of a problem that was discovered by accident during the daily use was
the deletion of a user or a team avatar. The feature was a part of Gitorious and it
was not required by the customer. However, it was discovered, that the deletion
of avatar images didn’t work properly. The problem was solved and the fix sent
back to Gitorious where it got accepted as a fix. Without an extensive use of the
application these kind of problems that where out of the required features might
have gone unnoticed.

Besides Verso group the instructors and the customer’s representatives used You-
Source during the development. Their practical usability testing of the software
brought up many issues related both to the features that were being developed by
Verso group and to the features already implemented in Gitorious. The instructors

34(48)

Verso Project Application Report 1.0 Public

and the customer’s representatives supplied their testing results mostly straight to
Trac which helped to keep the feedback organized. For example, one of the prob-
lems that were discovered this way was the issue that without a master branch the
source tree and commit log pages of a repository failed to load.

The unit and integration testing of new features was very useful in finding errors.
For example, the visibility of projects and repositories was thoroughly tested be-
cause the more tests were carried out, the more places were discovered that wrongly
displayed private projects or repositories. Another good example is the feature of
adding a single file to a repository. While testing, it wasn’t always clear to the de-
veloper what the behavior of Git would be in certain situations. For instance, when
a file was added to a former version of the repository, the head pointer not being at
the latest commit, the results were unexpected. It turned out that Git makes a new
branch for the added file starting from the former version, i.e. the commit where the
head pointer was.

The usability testing sessions brought up a number of usability issues. Some of the
problems were detected on both sessions and some came up only on either one of
the two. Problems with SSH key help and Getting started message were noted on both
sessions. Other ideas that came up during the sessions were a feature to compare
two different commits, a feature to ask the user for confirmation before he is added
to a team, and a page where a user can get information about how to get started
with the application.

In the first system testing session two errors were discovered. One concerned pri-
vate projects and their visibility. If a project was marked to be visible only to the
users logged in, it still showed the project in search results even if the current user
wasn’t logged in. The other error was related to mirroring an SVN repository. It
turned out that creating an SVN mirror repository doesn’t work at all on the test
server. The feature was tested again in the work stations and it worked fine. It re-
mained unknown why it failed on the test server. The problem was agreed with the
customer to be handled in future development.

The instructor Jukka-Pekka Santanen tested the WWW interface of YouSource and
discovered several usability issues. Some of them are described in Section 4.12. His
testing brought up many good improvements and not all of them could be imple-
mented because of lack of time, but they were agreed with the customer for future
development. In addition, one bug was found as a result of his testing. It con-
cerned project URL attributes (home URL, mailinglist URL and bugtracker URL),

35(48)

Verso Project Application Report 1.0 Public

and caused a crash when the URL was badly formed. This was solved with better
URL validation and error handling. The fix was also offered to Gitorious and it was
approved.

36(48)

Verso Project Application Report 1.0 Public

8 Realization of Objectives

The chapter describes the requirements set to YouSource and how well they were
achieved. The main features that were developed by Verso group were login us-
ing KorppiLDAP, private projects and repositories, a repository browser page and
different updating and mirroring methods for repositories. The usability modifica-
tions are discussed in Section 4.12. The features that were agreed with the customer
for future development include possibility to comment and certificate source code,
a button for automatic merging, editing of text based files via the WWW interface
and requiring the user’s SSH key only when truly needed.

It should be noted, that Verso project initially set out to develop a system that en-
ables releasing of source code among a work community. This requirement was not
fullfilled in the true meaning of the term release a piece of source code. In Yousource
a user can’t release a single version of his source code. Instead, if he has decided
to share his work on the web site, all the version history of the source code is ac-
cessible. However, the customer’s representatives made it clear from the start, that
a system with version control build in was one of the main requirements. Further-
more, the customer did not actually demand a system with a clear single version
releasing feature. Still, the need for such a feature has been noted in Section 8.5.

8.1 Realization of Requirements

All eleven mandatory and four out of six important functional requirements of the
application described in [2] were fulfilled in the project. Possibility to authenticate
users with Kerberos and requiring the user’s SSH key only when truly needed were
considered important but were agreed with the customer to further development
because of lack of time. Also four out of thirteen of the features marked as useful
were implemented.

Most of the usability improvement ideas that came up during the project were
implemented to YouSource. The ones that were agreed to further development were
considered too time consuming or difficult, or they came up too late so there was no
time left to implement them in the project. Usability modifications are described in
Section 4.12.

Figures 8.1 and 8.2 present simplified views of Gitorious before and after Verso

37(48)

Verso Project Application Report 1.0 Public

project. Figure 8.1 shows the project orientation of Gitorious that was diminished in
YouSource as shown in Figure 8.2. All the main functionalities that were developed
in Verso project are visible in Figure 8.2.

Figure 8.1: Simplified structure of Gitorious at the start of Verso project.

Figure 8.2: Simplified structure of YouSource at the end of Verso project.

38(48)

Verso Project Application Report 1.0 Public

8.2 Unsatisfactory Solutions in Implementation

The SVN mirroring for a repository was a requested feature from the customer.
There was a need to share source code on YouSource also for the users who use SVN
version control. The feature was developed and tested locally on the work stations
and then pushed to the server. Even though the feature worked fine locally, it does
not seem to work on the web server. The reason for this is currently unknown.

The URLs that a user can give to zip and SVN mirroring and to zip updating are
validated but not checked whether they respond or not. The validation should be
expanded so that it checks that the provided URL really contains a zip package or
an SVN repository. In a case of an error, a notification should be shown to the user.
The handling of these exceptions was not implemented during the project because
of lack of time and expertise.

A helper module was developed to update the metafile information to the the
database. However, as the technical instructor Antti-Juhani Kaijanaho pointed out,
the metafile helper GmrfHelper is not actually a helper class in the sense of Ruby
on Rails because helpers are normally classes related to the views that aid to dis-
play data to the user. The metafile helper should be implemented to repository

module.

Yet another poor implementation is Repositories page, also known as the repository
browser (see Figure 4.7 in Section 4.6). The feature works nicely, but the source
code for it is in a wrong controller. One might think that a page called repositories
is situated in the repositories controller, but instead, it currently resides in the site
controller. It was placed there because Verso group didn’t have enough knowledge
on the routing in Ruby on Rails. A proper way would have been to implement
the routing through the repositories controller. Gitorious developers had made the
repositories routing in a complicated way and Verso group didn’t know how to
modify the repository routes needed for the repository browser.

The last paragraph in Section 4.3 describes an issue with the terms of service, an
example of another unsatisfactory solution in the application.

39(48)

Verso Project Application Report 1.0 Public

8.3 Challenges in Implementation

Most of the problems faced in development of YouSource were related to the test
server. Some features behaved differently on the work stations compared to the test
server, like the SVN mirroring (see Section 8.2). On the other hand, KorppiLDAP
logging feature didn’t work at all on the work stations but on the test server no
problems were encountered. Therefore, some bugs were not spotted until they were
out for the users to find. Luckily, Gitorious provided a feature that let all the errors
happening on the test server to be emailed to Verso group. The feature enabled a
quick response to errors and helped to discover errors that were hard to find.

Gitorious sometimes works unreliably when the application is restarted. In some
cases Poller daemon won’t shut down in the restarting process but instead another
Poller deamon is created which results in two Pollers running at the same time. Until
the issue was discovered, there were half a dozen hours lost because, for example,
creating repositories didn’t work properly if more than one Pollers were running.

A new working tool Git, a new programming language Ruby and a new program-
ming framework Ruby on Rails were also a challenge in Verso project. The members
of Verso group had no experience on any of them before the project. However, all
these turned out to be very manageable tools and learning them was not a big issue.
Possibly due to the tools, Verso group was able to achieve a good work flow that
might not have been possible with more inflexible set of tools.

8.4 Modifications during the Implementation

Creating a project and a repository on a single form was changed to be handled in
two separate forms. The change was done after it was discovered that it was very
difficult to implement error handling into a single form that is handling two differ-
ent objects. At first, the feature had only one form which asked information for a
project and a repository and then created them both simultaneously. After discov-
ering that the page would crash on some situations, the feature was then changed
so that it was no longer possible to create a project and a repository at the same
time. Instead, if a user with no projects comes to Create a new repository page (see
Figure 4.4 in Section 4.4), a new function provides a link to Create a new project page.
Next to the link there is a button to create a generic project with one click. If the user
chooses the generic project, the application creates it and returns to the creation of a

40(48)

Verso Project Application Report 1.0 Public

repository, which was the intention of the user in the first place.

In the second source code review the tecnical instructor Antti-Juhani Kaijanaho
pointed out a couple of imperfect implementations. First, the use of command line
in Ruby code was insecure as it allowed a user to inject malicious code. The com-
mands using the backtick “ method were replaced with exec commands which
perform the same tasks more safely. Second, when passing the username and pass-
word to the script ldap_authenticate.py, once again the backtick method was
used. Here, a new problem was found as the password was visible to the users of the
operating system for a brief moment when the process was initiated. The backtick
method was replaced with IO.popen method to prevent the revealing of the pass-
words. Third, the LDAP authentication script was modified so that no malicious
code can be injected while printing into the log. However, none of the changes were
visible to the user.

8.5 Further Development Ideas

New ideas for features, usability improvements and bug corrections were suggested
by the customer, the instructors, the usability test users, the usability expert Meeri
Mäntylä and by the group members. Most of these ideas were agreed with the
customer for future developers because of lack of time in the project. A full list
of the development ideas to improve various parts of the application can be found
from the requirement specification [2].

User authentication with Kerberos would enable users from other universities to
log in to YouSource and collaborative projects to gain members more easily.

SSH should be required only when truly needed. Alternative update methods
(e.g. zip update) to Git were developed to YouSource. Some people might be using
the application solely with those methods, so requiring a SSH key before a user can
create a project is unnecessary.

Text based files could be edited through the WWW interface. YouSource has wiki
pages which are actually stored in a Git repository. Those pages can be modified on
the website and their version history is available too. The feature could be expanded
to all text based files in all repositories. Furthermore, for source code files a javasript
based programming API (like Bespin [7]) could be helpful.

The right to certificate source code files and commits could be given to certain

41(48)

Verso Project Application Report 1.0 Public

users. The certificate would be a sign to other users that the piece of code is of good
quality and it does what it is supposed to.

The possibility to accept merge requests on YouSource website could be added.
YouSource notifies the user if there is a merge request for any of his repositories, but
the merges can only be made with Git. Instead, the application could try to do the
merge and perform it if no conflicts are detected. Otherwise the merge would have
to be done manually.

Releasing of static files on Yousource could be implemented. This means that the
users could release files that have no version history. This would be useful if one
wants to release a single version of his software. It might also be easier for some
users to handle static files because then it would always be clear what file they need
to download in order to test the latest version of the software. In Git this is done
with tags by marking a commit with a release tag.

42(48)

Verso Project Application Report 1.0 Public

9 Guide for Future Developers

The customers from the Department of Mathematical Information Technology de-
cided that the software developed in Verso project is going to be further developed
after Verso project ends. The chapter provides some tips to guide the future devel-
opers so that the most essential issues of the software would be addressed as soon as
possible. For a more extensive look on the open issues, please refer to Verso Trac [2].

9.1 Essential Bugs

YouSource currently has nine known bugs and some of them limit the usability of
the software considerably. The following bugs should be highly prioritized when
the further development is started.

1. SVN mirroring is not working on the test server (see Section 8.2).
2. When a team member is removed, he can still create a repository under the

projects owned by the team.
3. Activities page (see Figure 9.1) crashes if an active project is removed.

43(48)

Verso Project Application Report 1.0 Public

Figure 9.1: Activities page of YouSource.

9.2 Improvements to Existing Features

Before starting to improving the existing features the developers should go through
the unsatisfactory implementation solutions described in Section 8.2. In addition,
the following features should be taken into account.

1. When updating a repository with a zip package a possibility to add a commit
message should be implemented.

2. Uploading of the user’s first SSH key should be added as part of the project or
repository creation process.

44(48)

Verso Project Application Report 1.0 Public

3. The Getting started message should be improved to include more information
about Git usage such as the command git init if the command git clone

fails for some reason.

9.3 The Most Useful New Features

Section 8.5 describes some of the feature ideas that came up during Verso project and
were discussed in the project meetings. Those features should take priority when
planning for new feature implementations.

In addition, the following feature ideas should be considered as the most useful
during the further development.

1. A how-to-get-started page which describes the most essential features of the
application and points the user to the right direction should be added.

2. A missing license of a repository should be highlighted.
3. Sorting and searching functions should be implemented to Repositories (see

Figure 4.7 in Section 4.6), Projects and Teams pages.
4. A possibility to add keywords to repositories should be implemented.
5. All new and existing users should be asked to accept the terms of service.

9.4 Development Practices

Section 14.1 in project report [10] describes some practices that were found inef-
fective during the project or would have been useful if they had been used. Two
important things that should have been done in Verso project were found.

Make use of the branching of Git. Every little new feature and improvement
should be done in its own branch and not in the master branch. This practice will
help to keep the version history clean and merge requests to upstream are easier to
do.

Take full advantage of the ticketing system. Tickets should have a clear naming
and tagging practice so that there is never confusion about what should be done
next or what the priorities are. It also makes browsing the tickets much easier.

45(48)

Verso Project Application Report 1.0 Public

10 Summary

Verso project developed a source code management and releasing software called
YouSource for Department of Mathematical Information Technology in University
of Jyväskylä. YouSource will be used for testing the practices of source code sharing
and version control usage among the employees of the department. YouSource is
a web application developed with Ruby on Rails and based on the open source
software called Gitorious.

On Gitorious users can host their Git repositories, create projects and teams, manage
merge requests of their repositories and read activity feeds of everything happening
on the website. Verso project developed half a dozen new features to Gitorious such
as private projects and repositories, alternative update methods and user authenti-
cation using KorppiLDAP interface. In addition, the usability of the application was
improved considerably as well as the appearance of the website was changed with
a new logo and a color theme.

During the project, YouSource was in daily active use by Verso group, the customer
and a couple of test users. This was possible because, as being a source code man-
agement website, YouSource could be used to host and manage its own source code.
Besides active use, YouSource was tested in two usability testing sessions, feature
integration tests and in two system testing sessions. The application was also once
reviewed by a usability expert and the source code was reviewed twice by the tech-
nical instructor of Verso project.

Verso project managed to complete all of the essential requirements set for the pro-
totype. Moreover, the customer decided to continue the development of YouSource
after the project. This means that the future developers can utilize the many devel-
opment ideas for the application that came up during Verso project.

46(48)

Verso Project Application Report 1.0 Public

11 References

[1] GitHub Inc., Secure Source Code Hosting and Collaborative Development, available
at URL: <http://github.com>, 2010.

[2] Tero Hänninen, Juho Nieminen, Marko Peltola and Heikki Salo, Verso
Project, Requirement Specification in Trac, University of Jyväskylä, De-
partment of Mathematical Information Technology, available at URL:
<https://trac.cc.jyu.fi/projects/verso/>, 2010.

[3] Tero Hänninen, Verso Project, System Testing Plan, University of Jyväskylä, De-
partment of Mathematical Information Technology, 2010.

[4] Tero Hänninen, Verso Project, System Testing Report, RC-1, University of Jyväs-
kylä, Department of Mathematical Information Technology, 2010.

[5] Tero Hänninen, Verso Project, System Testing Report, RC-2, University of Jyväs-
kylä, Department of Mathematical Information Technology, 2010.

[6] Tero Hänninen, Verso Project, Comparison of Platforms, University of Jyväskylä,
Department of Mathematical Information Technology, 2010.

[7] Mozilla, Bespin, Mozilla Labs, URL: <http://mozillalabs.com/bespin/>,
2010.

[8] Juho Nieminen, Verso Project, Muistio, 1. käytettävyystestaus, University of Jy-
väskylä, Department of Mathematical Information Technology, 2010.

[9] Juho Nieminen, Verso Project, Muistio, 2. käytettävyystestaus, University of Jy-
väskylä, Department of Mathematical Information Technology, 2010.

[10] Heikki Salo, Verso Project, Projektiraportti, University of Jyväskylä, Department
of Mathematical Information Technology, 2010.

[11] Johan Sørensen, About Gitorious, available at URL:
<http://gitorious.org/about>, Shortcut AS, 2009.

[12] Sanna Talja, Information Sharing in Academic Communities: Types and Lev-
els of Collaboration in Information Seeking and Use, New Review of In-
formation Behavior Research, vol. 3, pages 143–160, available at URL:

47(48)

Verso Project Application Report 1.0 Public

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=-
10.1.1.96.163&rep=rep1&type=pdf>, Taylor Graham Publishing,
2002.

48(48)

	Introduction
	Terminology
	General Terms
	Verso Specific Terms

	Background
	Publishing Channel for Source Codes
	Gitorious as a Starting Point

	User Interface
	Sitemap
	Page Structure
	Logging in
	Creating a Repository
	Creating a Mirror Repository
	Repository Browser
	Updating Repository with a Zip Package
	Adding Single Files to a Repository
	Private Repository
	Private Project
	Editing of Repository Metafiles
	Usability Modifications to the WWW Interface

	Application Structure
	Components
	Inner and External Interfaces
	Class Structure
	Metafiles

	Programming Practices
	Formatting, Naming and Commenting Practices
	Source Code Example
	Grouping Practices
	Development Platform

	Testing Practices and Results
	Integration Testing Practices
	Usability Testing Practices
	System Testing Practices
	Testing Results

	Realization of Objectives
	Realization of Requirements
	Unsatisfactory Solutions in Implementation
	Challenges in Implementation
	Modifications during the Implementation
	Further Development Ideas

	Guide for Future Developers
	Essential Bugs
	Improvements to Existing Features
	The Most Useful New Features
	Development Practices

	Summary
	References

