
Verso Project

Application Report

Tero Hänninen
Juho Nieminen
Marko Peltola

Heikki Salo

Version 0.2.3
Public

26.5.2010

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Acceptor Date Signature Clarification

Project manager __.__.2010

Customer __.__.2010

Instructor __.__.2010

Verso Project Application Report 0.2.3 Public

Project Contact Information

Authors:
Tero Hänninen tejohann@jyu.fi 0400-240468
Juho Nieminen juho.nieminen@jyu.fi 050-3831825
Marko Peltola marko.peltola@jyu.fi 041-4498622
Heikki Salo heikki.ao.salo@iki.fi 050-3397894

Customers:
Ville Tirronen ville.e.t.tirronen@jyu.fi 014-2604987
Tero Tuovinen tero.tuovinen@jyu.fi 050-4413685
Paavo Nieminen nieminen@jyu.fi 040-5768507
Tapani Tarvainen tt@it.jyu.fi 014-2602752

Instructors:
Jukka-Pekka Santanen santanen@mit.jyu.fi 014-2602756
Antti-Juhani Kaijanaho antti-juhani.kaijanaho@jyu.fi 014-2602766

Contact information:
Email lists verso@korppi.jyu.fi and

yousource-users.group@korppi.jyu.fi.

Email archives https://korppi.jyu.fi/kotka/servlet/

list-archive/verso/ and
https://korppi.jyu.fi/kotka/servlet/

list-archive/yousource-users.group/

Workroom AgC 222.2, tel. 014-2604963.

i

Verso Project Application Report 0.2.3 Public

Version History

Version Date Modications Modifier

0.0.1 20.4.2010 The report template was created. JN
0.0.2 21.4.2010 The initial table of contents was created and the

introduction was written.
JN

0.0.3 22.4.2010 The background chapter was started. JN
0.0.4 28.4.2010 The background chapter was finished and con-

tents to the user interface chapter was added.
JN

0.1.0 29.4.2010 The user interface chapter was continued. JN
0.1.1 3.5.2010 Typos were corrected and the structure chap-

ter and the programming practices chapter were
started.

JN

0.1.2 4.5.2010 The testing chapter was started. JN
0.1.3 5.5.2010 Appearance was fixed and notes concerning the

contents were added.
JN

0.1.4 6.5.2010 The realization of objectives chapter was started. JN
0.2.0 18.5.2010 Figures were added to user interface chapter.

Background chapter was modified. Sitemap and
metafiles subsection were added.

JN

0.2.1 20.5.2010 Figure labels and figures were modified. Terms
were added and clarified. Some text was added
here and there.

JN

0.2.2 24.5.2010 Subsection Header and Sidebar were put to-
gether in Page Structure chapter. Inner and
external interfaces figure was added and con-
tents for its chapter was written. System testing
and unsatisfactory implementations subsections
were written.

JN

0.2.3 25.5.2010 User interface chapter was modified and ex-
panded. Programming practices chapter was
written and realization of objectives chapter was
continued.

JN

ii

Verso Project Application Report 0.2.3 Public

Contents

1 Introduction 1

2 Terminology 2
2.1 General Terms . 2
2.2 Verso Specific Terms . 2

3 Background 4
3.1 Publishing Channel for Source Codes 4
3.2 Gitorious as a Starting Point . 4

4 User Interface 6
4.1 Sitemap . 6
4.2 Page Structure . 7
4.3 Logging in . 8
4.4 Creating a Repository . 9
4.5 Creating a Mirror Repository . 11
4.6 Repository Browser . 11
4.7 Updating Repository with a Zip Package 12
4.8 Adding Single Files to a Repository . 12
4.9 Private Repository . 14
4.10 Private Project . 14
4.11 Editing of Repository Metafiles . 15
4.12 Usability Modifications to the WWW Interface 15

5 Application Structure 18
5.1 Components . 18
5.2 Inner and External Interfaces . 19
5.3 Metafiles . 20
5.4 Class Structure . 20

6 Programming Practices 21
6.1 Formatting Practices . 21
6.2 Naming Practices . 23
6.3 Commenting Practices . 23
6.4 Grouping Practices . 24
6.5 Development Platform . 24

iii

Verso Project Application Report 0.2.3 Public

7 Testing 25
7.1 Testing Practices . 25
7.2 Usability Testing . 26
7.3 System Testing . 26

8 Realization of Objectives 27
8.1 Realization of Requirements . 27
8.2 Unsatisfactory Implementations . 27
8.3 Complications in Implementation . 28
8.4 Modifications in Implementation during the Project 28
8.5 Further Development Ideas . 28
8.6 Guide for Future Developers . 29

9 Summary 30

10 References 31

iv

Verso Project Application Report 0.2.3 Public

1 Introduction

In a work community, sharing information increases productivity [1]. For this rea-
son the Department of Mathematical Information Technology at University of Jy-
väskylä decided to start developing a method for researchers to share source code
with each other. The idea was first tried out by Ville Tirronen who tested a prototype
software that was found unsuitable for the users. The idea was then proposed for
a student project that was starting in the MIT department. The idea was approved
and the project, soon to be known as Verso, started to further develop the idea of
source code publishing software.

Verso project developed a web application that enables users to share and maintain
version history of their source code. The software is based on Gitorious, which is
a an open source application for hosting Git repositories. It was chosen to be the
starting point of the development because it covered the largest amount of require-
ments compared to the other reviewed software. Verso project defined, planned and
implemented the most essential missing functionalities to Gitorious. The web ap-
plication was developed with Ruby on Rails framework to be run on Linux servers
and PCs. It was named as YouSource by one of the customers, Tero Tuovinen.

This document describes the implementation of the features described in the re-
quirements specification [2]. In Chapter 2 the essential terminology used in the doc-
ument is explained. Chapter 3 tells more about the background of the project. Chap-
ter 4 describes the user interface of the application on the parts that were modified
in the project. Chapter 5 explains the inner structure of the application. Chapter 6
specifies the programming practices used during the project and Chapter 7 tells how
testing was carried out. In Chapter 8 it is considered how the objectives of the appli-
cation were fulfilled and finally in Chapter ?? the installation guide for the software
is presented.

Verso project wrote several documents describing the practices of the project that
support this document. The description of Verso project, its goals and practices
can be found from the project plan [?]. The realization of the goals and practices is
described in the project report [3]. Usability testing sessions are described in two
memos [7] [6]. System testing is described in System Testing Plan [9] and System
Test Results [10]. The comparison between different software platforms in the be-
ginning of the project is described in Comparison of Platforms [4].

1(31)

Verso Project Application Report 0.2.3 Public

2 Terminology

This chapter explains the alien terms that appear in this document. First, general
terms are explained, and then the terms that are more specific to Verso project are
described.

2.1 General Terms

Branch in Git is a pointer to a commit. The current branch deter-
mines where the user’s new commits will go.

Commit contains file modification data and a log message from the
user describing the changes.

Push uploads the new commits in the local repository to a remote
repository. It can be thought as releasing a version of a code.

MVC architecture i.e. Model-View-Controller, is an architectural pattern used
in software engineering. The pattern isolates the application
logic from input and presentation, permitting independent
development, testing and maintenance of each.

Ruby On Rails is an open source web application framework for Ruby pro-
gramming language.

2.2 Verso Specific Terms

KorppiLDAP is an authentication and directory access method. It is used
in YouSource for authenticating the users with Korppi cre-
dentials.

Owner is a user or a team. An owner has one or many projects and
repositories. He is allowed to commit to his repositories and
modify his projects and repositories details.

Private project means that the project is only seen by its members.

2(31)

Verso Project Application Report 0.2.3 Public

Private repository means that the repository is only seen by users that have
one of the following rights to it: view, review, commit or
administrate.

Project is a user created project in the Verso system which has one or
many repositories. It can have many attributes, for example
a description, a home page URL and keywords. A project is
owned by a user or a team.

Public means that the item (a repository or a project) is seen by all
users.

Repository refers to a Git repository which belongs to a project. It stores
data and the version history of that data. It can have several
attributes, for example a description and a license. A repos-
itory is owned by a user or a team.

Team is a group of users. One or more users are team admins and
the rest are team members. A team can own projects and
repositories.

Verso group refers to the developers in Verso project: Tero Hänninen,
Juho Nieminen, Marko Peltola and Heikki Salo.

Viewer is a status that a user can have for a repository. It grants the
ability to see the repository even if it is marked as private.

YouSource is the name of the developed application.

3(31)

Verso Project Application Report 0.2.3 Public

3 Background

This chapter goes briefly through the background of the developed software. What
led to starting of Verso project and the development of YouSource? What were the
initial goals? The Verso project was started off from a need for a better way to share
source code inside a work community and an interest in a prototype software for
that purpose.

3.1 Publishing Channel for Source Codes

Currently, at the MIT department in University of Jyväskylä, there is no common
system for version control. This causes a number pf problems. For instance, when a
worker leaves the department all the source code he has done might be lost too. The
lack of a single version control system also prevents workers from knowing who
is doing what, which may lead to producing overlapping work. Furthermore, the
current disorganized situation presents licensing problems in which one is unaware
who owns a piece of source code and how can it be used.

The aim was to get as many people to use proper version control as possible. There-
fore, a system that can be used in many different ways to support different users
was needed. A WWW interface was planned for the people unfamiliar with ver-
sion control. A command line interface was meant for the more experienced and
even features that will adapt to people’s current unique working methods should
be implemented, such as reading and mirroring a zip-archive at supplied URL.

3.2 Gitorious as a Starting Point

When the key requirements for the needed software were put together, it soon be-
came apparent that software closely fitting for the requirements already existed.
One noted application was GitHub which basically covered all the key require-
ments. However, GitHub is not open source and buying it would be too expen-
sive. More alternatives were reviewed [4] and finally Verso group ended up with
Gitorious [5].

Gitorious is an open source application for hosting projects that use Git. It stores

4(31)

Verso Project Application Report 0.2.3 Public

users’ repositories and provides useful tools to manage them. Gitorious encour-
ages users to collaborate with each other which gives it a feel of a social networking
website. Other reviewed software that came close to the initial requirements were
FusionForge, InDefero, GNU Savannah, Project Kenai, Fedora Hosted and Knowl-
edgeForge. The problems with these were inactivity, difficult repository creation
process, no activity view for repositories and limited search functions.

Gitorious had most of the required key features already implemented. It supports a
widely used version control application called Git, it has a WWW interface that cov-
ers most of the main features, all the information about the projects and repositories
is easily obtained. However, some of the requested features were missing from Gi-
torious. It didn’t support private projects or repositories , it didn’t save project infor-
mation to the repository itself and it didn’t support any update methods other than
Git. All these features were added to YouSource. In addition, the logging in was
changed to be similar to other services of the university and usability was increased
with user interface modifications.

5(31)

Verso Project Application Report 0.2.3 Public

4 User Interface

The user interface of YouSource was developed using HTML elements and a cascad-
ing style sheet (CSS). Most of the look of Gitorious was left untouched but almost all
the new features needed new user interface implementation. This chapter describes
the user interface changes that were done to Gitorious. Not only the web pages re-
lated to the new features were changed but also minor changes were made here and
there to improve usability.

4.1 Sitemap

Figure 4.1: Simplified sitemap of YouSource.

Since YouSource is based on a fully functional web application it has a lot of pages.
Figure 4.1 shows nearly all the pages and describes their relations. Not all links are
visible to simplify the picture. The common header and common footer components
are present in every page and provide links to the low level pages of the application.
In the picture, the horizontal axis displays the relative path of the pages and vertical

6(31)

Verso Project Application Report 0.2.3 Public

axis displays the logical dependencies between the pages. For instance, a project has
many repositories and a branch has many commits.

4.2 Page Structure

Figure 4.2: The header, breadcrumb, sidebar, main content and the footer on a page.

A general page structure in YouSource consists of five elements: the header, bread-
crumb, main content, sidebar and the footer. The header, footer and the breadcrumb
sections offer navigation and user control. The header is located at the top of each
page and contains the main menu and the user menu. The main menu contains
links to all the main pages of the application and the user menu contains links to
user information and user control. For users not logged in the user menu contains
only a link to login page.

7(31)

Verso Project Application Report 0.2.3 Public

The breadcrumb navigation is located right under the header but it is not visible on
all pages. It contains the logical path to the currently visible page. For example:
project / repository / branch / source tree. The breadcrumb is not visible on root pages
like the four main pages (activities, projects, repositories, teams) or project creation and
team creation pages.

The main content presents the most useful information on the page like the site
and project activities. All the forms that are used to create projects, repositories
and teams are also shown in the main content area as well as all the warning and
notification messages.

The sidebar is visible on most of the pages in the application. It contains additional
information for the main content section and links to management pages.

The footer is located at the bottom of each page. It contains a menu with links to
informative pages (about, FAQ, contact). A full view of a page in YouSource that
displays all the elements described in this chapter is shown in Figure 4.2.

4.3 Logging in

Gitorious uses email for logging users into the system. This was considered in-
consistent because all the current web applications in University of Jyväskylä use a
username for logging in. Therefore, YouSource was developed to use the username
too instead of email. Gitorious also sends an activation email after a new user has
registered. This feature was removed from YouSource since it is not needed because
users can’t register new usernames to the site by themselves. Instead, after the first
login the site itself creates a new user to its database with the provided username, if
the username and password matched the Korppi database.

One of the main application in the university is Korppi, which provides various
kinds of services for students, employees and guests. Korppi also provides an LDAP
authentication interface, and this was used to log users in to YouSource. The LDAP
authentication made it possible to not store user passwords at all to YouSource, since
Korppi already has that information. This led to removing all the UI elements that
handled passwords except for the login page which is shown in Figure 4.3.

8(31)

Verso Project Application Report 0.2.3 Public

Figure 4.3: The login view.

4.4 Creating a Repository

The way a user can create a repository has changed a lot from Gitorious to YouSource.
Gitorious offered only one way to create a repository while in YouSource a user has
several ways to do it. A user can initialize the repository with a zip file uploaded
from his computer, or he can set up a mirror repository by providing a URL to a zip
file or a SVN repository. If the user prefers not to use any of these options, a normal
empty repository will be created.

Figure 4.4 displays the form that is used to create a new repository. The form has two
sections: basic information and options. In the basic information section the user
specifies in which project the repository will be created and what name, description
and license will it have. The description is an optional attribute. The options section
lets the user further specify some optional features for the repository. These are

9(31)

Verso Project Application Report 0.2.3 Public

initializing the repository with a local zip file, setting a mirror repository (more of
this in Chapter 4.5), marking the repository as private and enabling merge requests
from other users.

Figure 4.4: The form for creating a new repository.

10(31)

Verso Project Application Report 0.2.3 Public

4.5 Creating a Mirror Repository

While creating a repository it is possible to provide a URL that specifies a zip file
or an SVN repository in the options section of the repository creation form (see Fig-
ure 4.4). This URL is called a mirror URL and it will be stored as an attribute to the
repository. If a URL for a zip file is provided the repository will be created normally
with Git and the contents of the zip will be added to it. On the other hand, if the user
selects SVN mirroring, the repository will be created by cloning the SVN repository.

If a mirror URL has been specified for a repository, the contents of the zip package
or the SVN repository will be downloaded daily to the repository in YouSource. A
script takes care of the daily update. It will go through all the mirror repositories in
YouSource and checks if there’s any changes in the source file or repository at the
mirror URL. The mirror URL can be changed at any time on the repository edit page
which can be accessed through the sidebar of the repository page.

4.6 Repository Browser

Gitorious doesn’t offer a listing page for repositories as it does for projects. In
YouSource this was corrected and a page displaying all the public repositories on
the site was created. In YouSource this page is one of the four main pages which
are activities, projects, repositories and teams. All the main pages have a link in the
common header in each page.

The repositories page consists of a list of repositories and a side bar. The repository
list is in the order the repositories are updated (latest first). The list is paginated for
twenty repositories which means that only twenty repositories are shown at once
and the rest can be viewed through page number links at the bottom of the list. If
a user is logged in, the repositories in which the user has commit rights are high-
lighted as is seen in Figure 4.5. In the sidebar there is a list of the most active repos-
itories from the past two weeks and a list of the user’s own active repositories (if
logged in). The sidebar also provides a link to create a new repository.

11(31)

Verso Project Application Report 0.2.3 Public

Figure 4.5: The repository browser (repositories page).

4.7 Updating Repository with a Zip Package

On the repository page the sidebar contains links to operational pages concerning
the repository. One of these links is update repository with zip which leads to a form
on a new page (see Figure 4.6). The form accepts a URL of a zip file or a path to
a local zip file for the update process. The form is also asking the user to specify
the branch in which does he want the zip file to be pushed (updated). The default
branch is the master branch if that exists. Otherwise, the default is a new branch but
the name for the new branch is suggested as master.

4.8 Adding Single Files to a Repository

Gitorious offers a way to browse the contents of a repository with a source tree view.
This view was updated so that at the bottom of the page there is a small form which
accepts a local file (see Figure 4.7). After sending the form the file will be added to
the directory that the source view is displaying. The current directory is shown in
the breadcrumb. The branch where the file will be added is the branch where the

12(31)

Verso Project Application Report 0.2.3 Public

Figure 4.6: The view of updating a repository with a zip file.

repository head is currently in. This form also allows updating files if a file with
existing file name in the repository is given.

Figure 4.7: The form for adding single files to the current branch.

13(31)

Verso Project Application Report 0.2.3 Public

4.9 Private Repository

A repository can be marked as private (as opposed to public) when the repository is
being created (see Figure ??) or later on the repository edit page. A private reposi-
tory means that it will only be shown to people that have view rights to it. A viewer
is a new type of user privilege that was developed into YouSource. The owner of a
repository can modify who can view his repository in the manage collaborators page.
The view rights can be given to a user or a team (latter will set all the members of
the team as viewers). However, a viewer can only access the repository page, not
the repository data. Those privileges require committer or administrator rights to
the repository.

4.10 Private Project

Much like repositories, projects can be marked as private as well. This can be done
when the project is created or later on the project edit page. However, projects have
a three step privacy while repositories have two step privacy. A project can be set
to be visible to everyone, visible to users that are logged in or visible only to the
members of the project (see Figure 4.8.

Members can be added and removed on the project members page which can be
accessed through the sidebar on the project page. It should be noted, that a project
which is only visible to members is also visible to users who have gained view rights
to one of the repositories in the project. That kind of user still can’t view the other
repositories in the project.

Figure 4.8: A partial view of the create a new project page showing the options for
creating a private project.

14(31)

Verso Project Application Report 0.2.3 Public

4.11 Editing of Repository Metafiles

Not all user interface changes concern the WWW interface. One improvement was
implemented to the use of command line interface with YouSource. The reposi-
tory name, description and the option to allow merge requests are editable through
the command line interface. This is achieved by adding a branch called yousour-

ce_metafiles to every repository created in YouSource. The branch contains a
plain text file which specifies the description and a YML file witch sets the other
options. These files are synchronized with the repository’s options so that changes
in the mentioned files show up in the repository’s info and vice versa.

4.12 Usability Modifications to the WWW Interface

One of the main problems with the prototype software that preceded YouSource
was the user interface. It was not clear enough for the users and it didn’t encourage
people to use the application. This is why the customer in Verso project wanted to
develop the user interface of the new software to be more user friendly than the
prototype. Partly, this is evident in the requirements for features enabling easier
update methods and user logging but usability improvements were needed also in
the build-in features of Gitorious.

Usability issued were discovered in various ways. The Verso group found problems
on their own by using the application during the development. Verso group also
consulted a usability expert Meeri Mäntylä and got valuable feedback from a couple
of initial users, the instructor Jukka-Pekka Santanen, the usability testing sessions
and from the system testing.

The most notable changes where made to the header and footer from which the
header was totally redesigned. The menu in header was centered and the user con-
trol links were separated from the main menu. Auri Kaihlavirta supplied a logo,
color theme and a bookmark icon for the website. The new header is shown in Fig-
ure 4.2 in section 4.2 and for comparison the Gitorious header is shown in Firuge 4.9.

YouSource relies on SSH key authentication. Users are asked to upload a public SSH
key before they can make a project. The SSH key generation process proved to be
difficult for inexperienced users during usability testing [6]. For this reason, the SSH
key help was remarkably improved.

15(31)

Verso Project Application Report 0.2.3 Public

Figure 4.9: Site header of Gitorious when logged in.

The usability testing sessions brought up another issue concerning a help box [7]. In
Gitorious, when a user creates a new repository, a getting started message is shown
until an initial commit is made to the repository. After that there is no way to bring
the useful getting started message back. In YouSource this was corrected so that
a getting started button is always shown and the getting started message can be
viewed any time by clicking the button.

In the system testing session two errors were discovered. One concerned private
projects and their visibility. If a project was marked to be visible only to users that
are logged in, it still showed the project in search results even if the current user
wasn’t logged in. The other error was about mirroring an SVN repository. It turned
out that creating an SVN mirror repository doesn’t work at all on the test server.
The feature was tested again in the work machines and it worked fine. It remained
unknown why it failed on the test server. The problem was left open for future
development.

Meeri Mäntylä reviewed YouSource and gave instructions to the project group how
to improve the usability of the application. Based on her advice, Gitorious’ term
dashboard (user’s home page) was changed to the term home. Form labels were
modified so that they have a colon at the end (e.g. Project name:). The difference
between a project and a repository was increased by adding a small label on top of
the project and repository names to indicate which one is in question.

Verso group found a few usability flaws in Gitorious during their own use of the
software. Buttons to create a new project and a new repository were added to project
and repository pages respectively. Buttons to delete a project or repository were
added to their own pages. The confirmation message for deleting a project was
unified with the repository deletion confirmation.

One of the instructors in Verso project, Jukka-Pekka Santanen, tested YouSourve in
the final stages of development. He suggested several usability improvements to the
WWW user interface. The create a new repository page in particular was modified to
be more self-explanatory based on Santanen’s feedback. Many other pages too were

16(31)

Verso Project Application Report 0.2.3 Public

improved according to his suggestions. To mention a few, the projects and reposi-
tories pages got a clarifying hint stating the order of the items listen on the pages.
The directory table in the source tree page was supplemented with headings. In the
repository page sidebar the link repository clones was made to only appear as
a link if clones exist.

17(31)

Verso Project Application Report 0.2.3 Public

5 Application Structure

This chapter describes the different components in YouSource and their relations to
each other. YouSource is mainly a server application because of its web service na-
ture. The application uses Ruby on Rails libraries, MySQL database, UltraSphinx
search engine, Stomp queuing server, Poller daemon to execute the queues, Git dae-
mon for file download service and a number of external Ruby libraries (most notably
Grit to handle Git functions).

5.1 Components

Git daemon is a simple server for Git repositories. It uses TCP and listens to
a single port and waits for a connection asking for a service and
serves that service if it is enabled. Git daemon makes it possible
for users of YouSource to push into repositories and clone them
with a right URL.

Grit provides object oriented read and write access to Git reposito-
ries via Ruby. YouSource uses Grit in most of its Git operations
in the source code. Grit was developed to power GitHub [8], a
source code management website very similar to Gitorious.

KorppiLDAP is an authentication and directory access method. It is used in
YouSource during the login process for authenticating the users
with Korppi credentials.

Poller daemon is a script that is used to execute commands from Stompserver’s
queue. Actions that rely on poller are merge request handling,
repository creation, archiving and deletion, SSH key handling,
Git functions and email notifications. The poller is always run-
ning because without it, none of these actions would be exe-
cuted.

MySQL is a relational database management system. It grants access
to YouSource’s database which stores all the data related to the
website such as user information (except passwords), event in-
formation, project information and repository information.

18(31)

Verso Project Application Report 0.2.3 Public

RoR libraries i.e. Ruby on Rails libraries, provide the basic functionalities
for for many classes in YouSource by inheritance. For instance,
the controller classes are inherited from ActionController class,
the model classes are inherited from ActionRecord class and the
processor classes are inherited from ApplicationProcessor class.

Stompserver is a Stomp messaging server with file, database, memory or ac-
tiverecord based first-in-first-out (FIFO) queues, queue moni-
toring and basic authentication written in Ruby programming
language. YouSource uses the queue for actions listed above in
the description of Poller daemon.

UltraSphinx is a Ruby On Rails configurator and client to the Sphinx full text
search engine. YouSource uses UltraSphinx for the search field
in the header of each page. It provides a text search of many at-
tributes such as project and repository names and descriptions.

5.2 Inner and External Interfaces

Figure 5.1: The components used in YouSource and their relations to each other.

If we examine the interfaces used in YouSource from the point of view of the source
code, the interfaces fall into categories of inner and external as presented in Fig-
ure 5.1. Ruby on Rails libraries and Ruby libraries belong to the inner interfaces

19(31)

Verso Project Application Report 0.2.3 Public

and everything else is an external component. In the figure, the web application
represents all the classes and modules used in YouSource.

If we examine the interfaces from another angle, from the user’s point of view, the
picture looks a bit different. Interfaces that appear as external for the user are HTTP,
SSH and Git. Everything else does not show for the user at all which means they are
inner interfaces from the user’s point of view.

5.3 Metafiles

The metafiles are files that describe information of a repository. In Verso project two
metafiles were developed: one YML file that holds information about the repository
name and the possibility to allow merge requests, and another plain text file that
holds the repository description. The YML file format is as follows:

name: verso-project

merge_requests_enabled: true

5.4 Class Structure

20(31)

Verso Project Application Report 0.2.3 Public

6 Programming Practices

The programming in Verso project started in the first phase of the project. From the
start, the goal was to develop code that fits Ruby standards and is similar to the rest
of the Gitorious code. During the project, the code was reviewed two times by the
technical instructor Antti-Juhani Kaijanaho, who gave feedback on the developed
code. Any questionable parts of the code were improved according to Kaijanaho’s
advice.

6.1 Formatting Practices

Readability was the main concern when formatting the source code. Two whites-
paces were used as indentation between code blocks. Only one command was writ-
ten per line. Long lines were split to several lines using intendation to emphasize
the continuity of the command. When possible, conditional commands were written
using positive logic utilizing the possibilities of Ruby such as the unless statement.
SQL statements were made simpler by using the find function of ActiveRecord
class of Ruby on Rails.

Below is an example of source code formatting in Verso project taken from repo-

sitories_controller.rb file.

def update_repo_with_zip

@repository = @owner.repositories.find_by_name_in_project!(

params[:id],

@containing_project

)

@root = Breadcrumb::UpdateRepositoryWithZip.new(@repository)

target_head = ""

if params[:target_head_selector] == ""

target_head = params[:target_head]

else

target_head = params[:target_head_selector]

end

21(31)

Verso Project Application Report 0.2.3 Public

if !params[:local_package_file].blank?

package_file = params[:local_package_file]

temp_dir = Repository.dir_for_temp_zip(

@repository.real_gitdir

)

‘mkdir #{temp_dir}‘

file_path = File.join(temp_dir,

sanitize_filename(

package_file.original_filename)

)

File.open(file_path, "wb") {

|f| f.write(package_file.read)

}

Repository.update_contents_from_zip(

@repository.real_gitdir,

file_path,

{"source_type" => "local_file",

"target_branch" => target_head}

)

#@repository.project.create_push_event(

@repository,

target_head,

current_user

) # FIXME

redirect_to [@repository.project_or_owner, @repository]

elsif !params[:package_url].blank?

Repository.update_contents_from_zip(

@repository.real_gitdir,

params[:package_url],

{"source_type" => "url",

22(31)

Verso Project Application Report 0.2.3 Public

"target_branch" => target_head}

)

#@repository.project.create_push_event(

@repository,

target_head,

current_user

) # FIXME

redirect_to [@repository.project_or_owner, @repository]

else

render :action => "update_repo_with_zip_form"

end

end

6.2 Naming Practices

All the names in the code were written in English. The naming of methods and
variables was kept as self-explanatory as possible. The idea was to keep the naming
good so no clarifying comments would be needed. Multipart names were written
with underline characters between the parts. Class names were an exception and
multipart class names were written together with every part starting with a capital
letter. Constants were written with all capital letters.

6.3 Commenting Practices

Commenting was kept minimal. The aim was to keep the code tidy and readable
so that no comments would be needed. However, when something peculiar was
done, it was accompanied with an explaining comment. Another situation when
commenting was used is when the implemented solution is considered imperfect.
These parts were marked with FIXME comments to help the future developers find
the problem areas. Comments were written in English.

23(31)

Verso Project Application Report 0.2.3 Public

6.4 Grouping Practices

The source code was divided into different files according to the MVC architecture
and Ruby on Rails practices. For example, the amount of embedded Ruby code was
kept minimal in the view files by processing the information as much as possible in
the corresponding controllers. Likewise, the controllers were kept clean by placing
most of the data processing in the model files. Also, the appearance of the web
pages was developed with a separate style sheet (CSS) file so that the HTML code
would stay simple.

6.5 Development Platform

No single developing platform was used during the project. Each member of the
project used a text editor of his choice to edit the source code. Gedit, Vim and
Notepad++ were the most used editors. The source code uses the UTF-8 charac-
ter encoding. Version control was handled with Git and YouSource itself making
the project self hosting which was one of the initial goals.

The browsers Firefox 3.5.9 and Konqueror 4.4.2 were used to test the user interface
and the general functionality of the application. Firebug 1.5.3 plug-in was used
to debug Javascript and CSS. The Ruby on Rails console was used to debug new
features.

24(31)

Verso Project Application Report 0.2.3 Public

7 Testing

In this chapter the testing in Verso project is described. The developed software,
YouSource, was tested during the project by Verso group, customers, tutors, initial
users and two usability test users. The customers started to use the software as
soon as it was set up in the test server. At that point no modifications were made
to Gitorious. The initial users were invited to use the software after most of the key
requirements were implemented. The usability tests took place at the final phases
of development.

7.1 Testing Practices

Verso group tested YouSource constantly during the development. The application
was used for maintaining and keeping the version history of its own source code.
In other words, YouSource was in active and practical use by Verso group during
the whole project. This practice revealed several bugs and usability issues from the
application and also produced new ideas for future development.

When new features were implemented they were instantly tested by its developer
and at least one other project member. The tests were based on the functional re-
quirements supplied by the customer. No automatic testing was exploited, although
the Ruby on Rails environment supports it. After the initial testing on the work ma-
chines the new features were added to the test server which was accessible for the
group of initial users and the customers.

Occasionally the test server turned testing into a challenge. The problem was that
it behaved differently compared to the work machines. A fine working feature on a
work machine would present an error at the test server. Therefore, some bugs were
not spotted but until they were out for the users to find. Luckily Gitorious served
a feature that let all the errors happening on the test server to be emailed to Verso
group. This feature enabled a quick response to errors and helped to discover errors
that were hard to find.

25(31)

Verso Project Application Report 0.2.3 Public

7.2 Usability Testing

YouSource’s ease of use was tested in two usability testing sessions [6][7]. Before the
sessions not much had been done to improve the usability of the application. The
focus of development had been on implementing the required new features. Still,
as one of the main ideas behind the project was to encourage more people to use
version control, it was necessary to put effort into usability too.

The two usability testing sessions were conducted very much the same way but
the test users very different. The first session had a test user who was an active
programmer and had used to operate with command line and version control. The
second testing session had an inexperienced test user instead. The testing sessions
brought up a number of usability issues. Some of the problems were detected on
both sessions and some came up only on either one of the two.

7.3 System Testing

The overall performance of the application was tested during one system testing
session. System Test Plan [9] describes the tests that were carried out in the session
and System Test Results [10] discusses the results from the testing. The system tests
go through all the features that were developed during Verso project. Every test has
a set preconditions, test steps and postconditions that all must pass for the test to
pass. The results display a list of the performed tests, a mark if the test passed or
failed and a comment if the test failed.

26(31)

Verso Project Application Report 0.2.3 Public

8 Realization of Objectives

This chapter describes the requirements set to YouSource and how well they were
achieved. The main features that were developed were: login using KorppiLDAP,
private projects and repositories, a repository browser page and different updating
and mirroring methods for repositories. Some of the features that were left for future
development were: possibility to comment and certificate source code, button for
automatic merging, editing of text based files via the WWW interface and requiring
the user’s SSH key only when truly needed.

8.1 Realization of Requirements

All of the mandatory and nearly all of the important feature requirements [2] of
the application were fulfilled in the project. Possibility to authenticate users with
Kerberos and requiring the user’s SSH key only when truly needed were considered
important but were left out because of lack of time. Out of the features marked as
useful only the feature that shows an abbreviation of the repository’s license was
implemented.

8.2 Unsatisfactory Implementations

The SVN mirroring for a repository was a requested feature from the customer. The
idea was to give a way to share source code on YouSource also for the people who
use SVN version control. The feature was developed and tested locally on the work
machines and then pushed to the server. Even though the feature worked fine lo-
cally, it does not seem to work on the web server. The reason for this is currently
unknown.

Another poor implementation is the repositories page, also known as the repository
browser. The feature works nicely, but the source code for it is in a wrong con-
troller. One might think that a page called repositories is situated in the repositories
controller, but instead, it currently resides in the site controller. It was placed there
because the Verso group didn’t have enough knowledge of the routing in Ruby on
Rails so that the repositories browser could have been routed through the reposito-
ries controller. Gitorious developers had made the repositories routing in an odd

27(31)

Verso Project Application Report 0.2.3 Public

way and the Verso group didn’t know how to modify the repository routes needed
for the repository browser.

8.3 Complications in Implementation

Most of the problems faced in development of YouSource were related to the test
server. Some features behaved differently on the work machined compared to the
test server, for example the SVN mirroring. In addition, KorppiLDAP logging fea-
ture didn’t work at all on the work machines but on the test server it was fine.

Gitorious has a problem when the application is restarted. There is a chance that
Poller daemon won’t shut down in the restating process but instead another Poller
deamon is created which results in two Pollers running at the same time. Until this
issue was found, there was some hours lost because, for example, creating reposito-
ries didn’t work properly if more than one Poller was running.

New working tool Git, a new programming language Ruby and a new program-
ming framework Ruby on Rails were also a challenge in Verso project. None of the
Verso group had experience of any of these before the project. However, all these
turned out to be very manageable tools and learning them was not a big issue. It
might be that partly because of these tools, Verso group was able to achieve a good
work flow that might not have been possible with more inflexible tools.

8.4 Modifications in Implementation during the Project

Creating a project and a repository on a single form was changed to be handled in
two separate forms after it was discovered that error handling was very difficult to
implement to a single form handling two different objects.

8.5 Further Development Ideas

Trac tickets...

28(31)

Verso Project Application Report 0.2.3 Public

8.6 Guide for Future Developers

Trac tickets... Priorities and bugs...

29(31)

Verso Project Application Report 0.2.3 Public

9 Summary

Summing up the whole document...

30(31)

Verso Project Application Report 0.2.3 Public

10 References

[1] Sanna Talja, Information sharing in academic communities: Types and levels of collab-
oration in information seeking and use, 2002, New Review of Information Behavior
Research, vol. 3, pages 143–160.

[2] Tero Hänninen & Juho Nieminen & Marko Peltola & Heikki Salo, Requirement
Specification, Verso Project, 2010.

[3] Heikki Salo, Project Report, Verso Project, 2010.

[4] Tero Hänninen, Comparison of Platforms, Verso Project, 2010

[5] Johan Sørensen, About Gitorious, 2009.

[6] Juho Nieminen, Memo, 2. usability testing, Verso Project, 2010.

[7] Juho Nieminen, Memo, 1. usability testing, Verso Project, 2010.

[8] GitHub Inc., Secure source code hosting and collaborative development, URL:
<http://github.com>, 2010.

[9] Tero Hänninen, Test Plan, Verso Project, 2010.

[10] Tero Hänninen, System Test Results, Verso Project, 2010.

9

31(31)

	Introduction
	Terminology
	General Terms
	Verso Specific Terms

	Background
	Publishing Channel for Source Codes
	Gitorious as a Starting Point

	User Interface
	Sitemap
	Page Structure
	Logging in
	Creating a Repository
	Creating a Mirror Repository
	Repository Browser
	Updating Repository with a Zip Package
	Adding Single Files to a Repository
	Private Repository
	Private Project
	Editing of Repository Metafiles
	Usability Modifications to the WWW Interface

	Application Structure
	Components
	Inner and External Interfaces
	Metafiles
	Class Structure

	Programming Practices
	Formatting Practices
	Naming Practices
	Commenting Practices
	Grouping Practices
	Development Platform

	Testing
	Testing Practices
	Usability Testing
	System Testing

	Realization of Objectives
	Realization of Requirements
	Unsatisfactory Implementations
	Complications in Implementation
	Modifications in Implementation during the Project
	Further Development Ideas
	Guide for Future Developers

	Summary
	References

