
Halyri - Udp
1.0.1

Generated by Doxygen 1.8.7

Wed Jun 25 2014 00:38:35

ii CONTENTS

Contents

1 Namespace Documentation 1

1.1 Package SimpleUdpMediaClient . 1

1.1.1 Function Documentation . 2

1.2 Package SimpleUdpMediaClient.Collections . 2

1.3 Package SimpleUdpMediaClient.Packets . 2

1.3.1 Enumeration Type Documentation . 3

2 Class Documentation 3

2.1 BlockingQueue< T > Class Template Reference . 3

2.1.1 Detailed Description . 4

2.1.2 Constructor & Destructor Documentation . 4

2.1.3 Member Function Documentation . 4

2.2 ControlPacket Class Reference . 5

2.2.1 Detailed Description . 6

2.2.2 Member Enumeration Documentation . 6

2.2.3 Constructor & Destructor Documentation . 7

2.2.4 Member Function Documentation . 8

2.2.5 Member Data Documentation . 8

2.2.6 Property Documentation . 9

2.3 INetworkPacket Interface Reference . 9

2.3.1 Detailed Description . 9

2.3.2 Member Function Documentation . 9

2.4 MediaContinuationPacket Class Reference . 11

2.4.1 Detailed Description . 12

2.4.2 Constructor & Destructor Documentation . 12

2.4.3 Member Function Documentation . 13

2.4.4 Member Data Documentation . 13

2.4.5 Property Documentation . 14

2.5 MediaHeaderPacket Class Reference . 14

2.5.1 Detailed Description . 15

2.5.2 Constructor & Destructor Documentation . 15

2.5.3 Member Function Documentation . 16

2.5.4 Member Data Documentation . 17

2.5.5 Property Documentation . 17

2.6 MediaInformation Class Reference . 18

2.6.1 Detailed Description . 18

2.6.2 Constructor & Destructor Documentation . 18

2.6.3 Property Documentation . 18

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

1 Namespace Documentation 1

2.7 MediaPacket Class Reference . 19

2.7.1 Detailed Description . 20

2.7.2 Constructor & Destructor Documentation . 20

2.7.3 Member Function Documentation . 22

2.7.4 Property Documentation . 22

2.8 PingPacket Class Reference . 23

2.8.1 Detailed Description . 24

2.8.2 Constructor & Destructor Documentation . 24

2.8.3 Member Function Documentation . 24

2.8.4 Member Data Documentation . 25

2.8.5 Property Documentation . 25

2.9 UdpMediaClientSocket Class Reference . 25

2.9.1 Detailed Description . 27

2.9.2 Constructor & Destructor Documentation . 27

2.9.3 Member Function Documentation . 28

2.9.4 Member Data Documentation . 30

2.9.5 Property Documentation . 30

1 Namespace Documentation

1.1 Package SimpleUdpMediaClient

Namespaces

• package Collections
• package Packets

Classes

• class UdpMediaClientSocket

The class is client socket implementing a simple UDP-based media transfer protocol. Delivery of packets is not
guaranteed. Sent packets are split to conform to the specified MTU. The underlaying IP checksum is relied upon for
the integrity of the packets. The constant ping packets are employed to monitor the connection and to keep the UDP
packets routed in both directions by the network channel.

Functions

• delegate void MediaPacketReceived (object sender, MediaPacket p)

The function is delegate for media packet receive events.

• delegate void ControlPacketReceived (object sender, ControlPacket c)

The function is delegate for control packet receive events.

• delegate void SuspectedConnectionProblem (object sender)

The function is delegate for connection problem events.

• delegate void ConnectionFailed (object sender)

The function is delegate for connection failure events.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2 CONTENTS

1.1.1 Function Documentation

1.1.1.1 delegate void SimpleUdpMediaClient.ConnectionFailed (object sender)

The function is delegate for connection failure events.

Parameters

sender The sending instance of SimpleUdpMediaClient.

1.1.1.2 delegate void SimpleUdpMediaClient.ControlPacketReceived (object sender, ControlPacket c)

The function is delegate for control packet receive events.

Parameters

sender The sending instance of SimpleUdpMediaClient.
c The received ControlPacket.

1.1.1.3 delegate void SimpleUdpMediaClient.MediaPacketReceived (object sender, MediaPacket p)

The function is delegate for media packet receive events.

Parameters

sender The sending SimpleUdpMediaClient instance.
p The received MediaPacket.

1.1.1.4 delegate void SimpleUdpMediaClient.SuspectedConnectionProblem (object sender)

The function is delegate for connection problem events.

Parameters

sender The sending instance of SimpleUdpMediaClient.

1.2 Package SimpleUdpMediaClient.Collections

Classes

• class BlockingQueue< T >

The class is a thread-safe blocking queue that has a defined, finite length.

1.3 Package SimpleUdpMediaClient.Packets

Classes

• class ControlPacket

The class represents a control packet for the protocol defined and implement by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID, a Int64 sequence number, a target GUID and a command.

• interface INetworkPacket

The class interface represents a network level packet. It exposes methods for converting the packet from and to a
byte array representation for network transfer.

• class MediaContinuationPacket

The class represents a subsequent portion of MediaPacket. MediaContinuationPackets are used to transfer the data
that remains after the data worth first MTU is taken from the MediaPacket and costructed into a MediaHeaderPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2 Class Documentation 3

• class MediaHeaderPacket

The class represents media information and payload data up to one network MTU in length from a MediaPacket.
MediaHeaderPackets are used to transfer a portion of payload data and the media information from a MediaPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

• class MediaInformation

The class for media type information. It is used to the format and the compression of a media.

• class MediaPacket

The class representts a user-level media packet. The packet is used when receiving and sending media using the
UdpMediaClientSocket. It encapsulates the complete media data and media type information. It can provide a
collection of NetworkPackets conforming to the network MTU for network transfer. It can later be reconstructed from
such packets at the receiving end.

• class PingPacket

The class represents a ping packet for the protocol defined and implemented by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID and a Int64 sequence number.

Enumerations

• enum MediaFormat : short {
H264, Wav, Wma, Wmv,
Speex, Opus, Jpg }

The Media format enumeration to specify media formats.

• enum TransferCompression : short { None, GZip }

The media transfer compression format enumeration specify the used compression.

1.3.1 Enumeration Type Documentation

1.3.1.1 enum MediaFormat : short

The Media format enumeration to specify media formats.

1.3.1.2 enum TransferCompression : short

The media transfer compression format enumeration specify the used compression.

2 Class Documentation

2.1 BlockingQueue< T > Class Template Reference

The class is a thread-safe blocking queue that has a defined, finite length.

Public Member Functions

• BlockingQueue ()

The function initializes a new blocking queue that has the default length of 30 elements.

• BlockingQueue (int capacity)

The function initializes a blocking queue with the specified length.

• void Enqueue (T element)

The function enqueues the element. If the queue is full, the operation will block until free space becomes available.

• bool Offer (T element)

The function tries to enqueue the element. If the operation succeeds without blocking, it returns true. Otherwise it
return false.

• T Dequeue ()

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

4 CONTENTS

The function dequeues and returns the last element from the end of the queue. The opeartion will block if the queue
is empty.

• bool Peek (out T element)

The function tries to dequeue the last element from the end of the queue. If operation succeeds without blocking, it
returns true. Otherwise it returns false.

• int Count ()

The function gets the count of elements in the queue.

2.1.1 Detailed Description

The class is a thread-safe blocking queue that has a defined, finite length.

<author>Veli-Mikko Puupponen</author>

Template Parameters

T The type of the elements in the queue.

2.1.2 Constructor & Destructor Documentation

2.1.2.1 BlockingQueue ()

The function initializes a new blocking queue that has the default length of 30 elements.

2.1.2.2 BlockingQueue (int capacity)

The function initializes a blocking queue with the specified length.

Parameters

capacity The length of the queue.

2.1.3 Member Function Documentation

2.1.3.1 int Count ()

The function gets the count of elements in the queue.

Returns

The number of elements in this queue.

2.1.3.2 T Dequeue ()

The function dequeues and returns the last element from the end of the queue. The opeartion will block if the queue
is empty.

Returns

The last element in the queue.

2.1.3.3 void Enqueue (T element)

The function enqueues the element. If the queue is full, the operation will block until free space becomes available.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.2 ControlPacket Class Reference 5

Parameters

element The element to be enqueued.

2.1.3.4 bool Offer (T element)

The function tries to enqueue the element. If the operation succeeds without blocking, it returns true. Otherwise it
return false.

Parameters

element The element to be enqueued.

Returns

True, if the element was successfully enqueued, otherwise false.

2.1.3.5 bool Peek (out T element)

The function tries to dequeue the last element from the end of the queue. If operation succeeds without blocking, it
returns true. Otherwise it returns false.

Parameters

element The last element in the queue.

Returns

True, if the opeation succeeds, otherwise false.

The documentation for this class was generated from the following file:

• BlockingQueue.cs

2.2 ControlPacket Class Reference

The class represents a control packet for the protocol defined and implement by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID, a Int64 sequence number, a target GUID and a command.

Inherits INetworkPacket.

Public Types

• enum CommandType : byte { RequestEnableRouting, RequestDisableRouting, Statistics }

The enumeration for command type. It is used to specify the command of the control packet.

Public Member Functions

• ControlPacket ()

The function initializes a new ControlPacket instance with no parameters.

• ControlPacket (string sourceGuid, string targetGuid, CommandType command, byte[] payload, Int64
sequenceNumber)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command,
payload data and sequence number.

• ControlPacket (string sourceGuid, string targetGuid, CommandType command, Int64 sequenceNumber)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
sequence number.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

6 CONTENTS

• ControlPacket (string sourceGuid, string targetGuid, CommandType command, byte[] payload)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
payload data.

• ControlPacket (string sourceGuid, string targetGuid, CommandType command)

The function initializes a new ControlPacket instance that has the specified source and target Guids and command.

• ControlPacket (byte[] sourceGuid, byte[] targetGuid, CommandType command, byte[] payload)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
payload data.

• void FromBytes (byte[] packetBytes)

The function gets the command, the target guid and the packet control data from the given data and saves them.

• byte[] GetBytes (long sequenceNumber)

The function saves the given sequence number and returns the data header of the currently saved sequence.

• byte[] GetBytes ()

The function returns the data header of the currently saved sequence.

Public Attributes

• const byte PacketId = 2

The specified id of the packet type. It is used to identify a packet.

• const int HeaderLengthInOctets = 42

The specified length of the packet header in octets.

Properties

• string SourceGuid [get]

The function to get the Guid identifying the sender.

• string TargetGuid [get]

The function to get the Guid identifying the target.

• Int64 Sequence [get, set]

The function to set and get the packet sequence number.

• CommandType Command [get]

The function to get the packet command.

• byte[] PayloadData [get]

The function to get the packet payload data. Can be null.

2.2.1 Detailed Description

The class represents a control packet for the protocol defined and implement by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID, a Int64 sequence number, a target GUID and a command.

<author>Veli-Mikko Puupponen</author> Control packets are primarily user to request server packet routing from
one client to another.

This packet can have optional payload data.

2.2.2 Member Enumeration Documentation

2.2.2.1 enum CommandType : byte

The enumeration for command type. It is used to specify the command of the control packet.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.2 ControlPacket Class Reference 7

2.2.3 Constructor & Destructor Documentation

2.2.3.1 ControlPacket ()

The function initializes a new ControlPacket instance with no parameters.

2.2.3.2 ControlPacket (string sourceGuid, string targetGuid, CommandType command, byte[] payload, Int64
sequenceNumber)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command,
payload data and sequence number.

It throws an ArgumentException if source or target Guid is malformed.

Parameters

sourceGuid The string representation of the sender’s Guid.
sourceGuid The string representation of the target’s Guid.

command The packet command.
payload The optional payload data.

sequence←↩
Number

Packet sequence number.

2.2.3.3 ControlPacket (string sourceGuid, string targetGuid, CommandType command, Int64 sequenceNumber)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
sequence number.

It throws an ArgumentException if source or target Guid is malformed.

Parameters

sourceGuid The string representation of the sender’s Guid.
sourceGuid The string representation of the target’s Guid.

command The packet command.
sequence←↩

Number
Packet sequence number.

2.2.3.4 ControlPacket (string sourceGuid, string targetGuid, CommandType command, byte[] payload)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
payload data.

It throws an ArgumentException if source or target Guid is malformed.

Parameters

sourceGuid The string representation of the sender’s Guid.
sourceGuid The string representation of the target’s Guid.

command The packet command.
payload The optional payload data.

2.2.3.5 ControlPacket (string sourceGuid, string targetGuid, CommandType command)

The function initializes a new ControlPacket instance that has the specified source and target Guids and command.

It throws an ArgumentException if source or target Guid is malformed.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

8 CONTENTS

Parameters

sourceGuid The byte representation of the sender’s Guid.
sourceGuid The byte representation of the target’s Guid.

command The packet command.

2.2.3.6 ControlPacket (byte[] sourceGuid, byte[] targetGuid, CommandType command, byte[] payload)

The function initializes a new ControlPacket instance that has the specified source and target Guids, command and
payload data.

It throws an ArgumentException if any of the arguments is null.

Parameters

sourceGuid The byte representation of the sender’s Guid.
sourceGuid The byte representation of the target’s Guid.

command The packet command.
payload The optional payload data.

2.2.4 Member Function Documentation

2.2.4.1 void FromBytes (byte[] packetBytes)

The function gets the command, the target guid and the packet control data from the given data and saves them.

Parameters

packetBytes The given data.

Implements INetworkPacket.

2.2.4.2 byte [] GetBytes (long sequenceNumber)

The function saves the given sequence number and returns the data header of the currently saved sequence.

Returns

The data header of current the sequence.

2.2.4.3 byte [] GetBytes ()

The function returns the data header of the currently saved sequence.

Returns

The data header of current the sequence.

Implements INetworkPacket.

2.2.5 Member Data Documentation

2.2.5.1 const int HeaderLengthInOctets = 42

The specified length of the packet header in octets.

2.2.5.2 const byte PacketId = 2

The specified id of the packet type. It is used to identify a packet.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.3 INetworkPacket Interface Reference 9

2.2.6 Property Documentation

2.2.6.1 CommandType Command [get]

The function to get the packet command.

2.2.6.2 byte [] PayloadData [get]

The function to get the packet payload data. Can be null.

2.2.6.3 Int64 Sequence [get], [set]

The function to set and get the packet sequence number.

2.2.6.4 string SourceGuid [get]

The function to get the Guid identifying the sender.

2.2.6.5 string TargetGuid [get]

The function to get the Guid identifying the target.

The documentation for this class was generated from the following file:

• ControlPacket.cs

2.3 INetworkPacket Interface Reference

The class interface represents a network level packet. It exposes methods for converting the packet from and to a
byte array representation for network transfer.

Inherited by ControlPacket, MediaContinuationPacket, MediaHeaderPacket, and PingPacket.

Public Member Functions

• byte[] GetBytes (Int64 sequence)

The function converts this packet to a byte array for network transfer. The specified seqeuence number will be used
in the packet header.

• byte[] GetBytes ()

The function converts this packet to a byte array for network transfer. The sequence number specified in the packet
will be used.

• void FromBytes (byte[] packetBytes)

The function sets the state of this packet from the provided array of bytes. If the array does not containt a valid byte
representation of the type of packet, It throws an ArgumentException.

2.3.1 Detailed Description

The class interface represents a network level packet. It exposes methods for converting the packet from and to a
byte array representation for network transfer.

<author>Veli-Mikko Puupponen</author>

2.3.2 Member Function Documentation

2.3.2.1 void FromBytes (byte[] packetBytes)

The function sets the state of this packet from the provided array of bytes. If the array does not containt a valid byte
representation of the type of packet, It throws an ArgumentException.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

10 CONTENTS

It throws an ArgumentException if the provided array does not containt a valid byte repsentation of the packet type.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.4 MediaContinuationPacket Class Reference 11

Parameters

packetBytes The byte representation of a packet with the same type as this packet.

Implemented in MediaHeaderPacket, ControlPacket, MediaContinuationPacket, and PingPacket.

2.3.2.2 byte [] GetBytes (Int64 sequence)

The function converts this packet to a byte array for network transfer. The specified seqeuence number will be used
in the packet header.

It throws an ArgumentException if the packet is not in a properly initializes state.

Parameters

sequence The packet sequence number for the transfer header.

Returns

A byte array containing data and transfer header for the packet.

2.3.2.3 byte [] GetBytes ()

The function converts this packet to a byte array for network transfer. The sequence number specified in the packet
will be used.

It throws an ArgumentException if the packet is not in a properly initializes state.

Returns

A byte array containing data and transfer header for this packet.

Implemented in ControlPacket, MediaHeaderPacket, MediaContinuationPacket, and PingPacket.

The documentation for this interface was generated from the following file:

• INetworkPacket.cs

2.4 MediaContinuationPacket Class Reference

The class represents a subsequent portion of MediaPacket. MediaContinuationPackets are used to transfer the data
that remains after the data worth first MTU is taken from the MediaPacket and costructed into a MediaHeaderPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

Inherits INetworkPacket.

Public Member Functions

• MediaContinuationPacket ()

The function initializes a new MediaContinuationPacket with no parameters.

• MediaContinuationPacket (byte[] guid, Int32 packetOrderNumber, Int32 packetCount, byte[] payload, Int64
sequenceNumber)

The function initializes a new MediaContinuationPacket instance that has the specified source Guid, packet order
number, packet count, payload data and sequence number.

• MediaContinuationPacket (byte[] guid, Int32 packetOrderNumber, Int32 packetCount, byte[] payload)

The function initializes a new MediaContinuationPacket instance that has the specified source Guid, packet order
number, packet count and payload data. The sequence number must be provided prior any calls to the parameterless
GetBytes.

• byte[] GetBytes (long sequenceNumber)

The function saves the given sequence number and returns the data header of the currently saved sequence.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

12 CONTENTS

• void FromBytes (byte[] packetBytes)

The function gets the sequence, the total amount of packets, the packet number and the target guid from the header
of the given data and saves them.

• byte[] GetBytes ()

The function returns the data header of the currently saved sequence.

Public Attributes

• const int HeaderLengthInOctets = 33

The specified length of the packet header in octets.

• const byte PacketId = 1

The specified id of the packet type. It is used to identify a packet.

Properties

• string SourceGuid [get]

The function to get the Guid identifying the sender.

• Int64 Sequence [get, set]

The function to get and set the packet sequence number.

• Int32 TotalPacketCount [get]

The function to get the total number of packets in the related transfer sequence.

• Int32 PacketNumber [get]

The function to get the number of this packet in the related transfer sequence.

• byte[] PayloadData [get]

The function to get the payload data.

2.4.1 Detailed Description

The class represents a subsequent portion of MediaPacket. MediaContinuationPackets are used to transfer the data
that remains after the data worth first MTU is taken from the MediaPacket and costructed into a MediaHeaderPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

<author>Veli-Mikko Puupponen</author> This packet consist of a packet type identifier, sender GUID, a Int64
sequence number, packet count and packet number in the transfer sequence.

This packet must always have payload data.

2.4.2 Constructor & Destructor Documentation

2.4.2.1 MediaContinuationPacket ()

The function initializes a new MediaContinuationPacket with no parameters.

2.4.2.2 MediaContinuationPacket (byte[] guid, Int32 packetOrderNumber, Int32 packetCount, byte[] payload, Int64
sequenceNumber)

The function initializes a new MediaContinuationPacket instance that has the specified source Guid, packet order
number, packet count, payload data and sequence number.

The first continuation packet in a network level transfer sequence always has packetOrderNumber = 1.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.4 MediaContinuationPacket Class Reference 13

Parameters

guid The string representation of the sender’s Guid.
packetOrder←↩

Number
The number of the this packet in the transfer sequence.

packetCount The total count of packets in the transfer sequence.
payload The payload data for this packet.

sequence←↩
Number

The sequence number for this packet. Must not vary within a transfer sequence.

2.4.2.3 MediaContinuationPacket (byte[] guid, Int32 packetOrderNumber, Int32 packetCount, byte[] payload)

The function initializes a new MediaContinuationPacket instance that has the specified source Guid, packet order
number, packet count and payload data. The sequence number must be provided prior any calls to the parameter-
less GetBytes.

The first continuation packet in a network level transfer sequence always has packetOrderNumber = 1.

Parameters

guid The string representation of the sender’s Guid.
packetOrder←↩

Number
The number of the this packet in the transfer sequence.

packetCount The total count of packets in the transfer sequence.
payload The payload data for this packet.

2.4.3 Member Function Documentation

2.4.3.1 void FromBytes (byte[] packetBytes)

The function gets the sequence, the total amount of packets, the packet number and the target guid from the header
of the given data and saves them.

Parameters

packetBytes The given data.

Implements INetworkPacket.

2.4.3.2 byte [] GetBytes (long sequenceNumber)

The function saves the given sequence number and returns the data header of the currently saved sequence.

Returns

The data header of current the sequence.

2.4.3.3 byte [] GetBytes ()

The function returns the data header of the currently saved sequence.

Returns

The data header of current the sequence.

Implements INetworkPacket.

2.4.4 Member Data Documentation

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

14 CONTENTS

2.4.4.1 const int HeaderLengthInOctets = 33

The specified length of the packet header in octets.

2.4.4.2 const byte PacketId = 1

The specified id of the packet type. It is used to identify a packet.

2.4.5 Property Documentation

2.4.5.1 Int32 PacketNumber [get]

The function to get the number of this packet in the related transfer sequence.

2.4.5.2 byte [] PayloadData [get]

The function to get the payload data.

2.4.5.3 Int64 Sequence [get], [set]

The function to get and set the packet sequence number.

2.4.5.4 string SourceGuid [get]

The function to get the Guid identifying the sender.

2.4.5.5 Int32 TotalPacketCount [get]

The function to get the total number of packets in the related transfer sequence.

The documentation for this class was generated from the following file:

• MediaContinuationPacket.cs

2.5 MediaHeaderPacket Class Reference

The class represents media information and payload data up to one network MTU in length from a MediaPacket.
MediaHeaderPackets are used to transfer a portion of payload data and the media information from a MediaPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

Inherits INetworkPacket.

Public Member Functions

• MediaHeaderPacket ()

The function initializes a new MediaHeaderPacket instance with no parameters.

• MediaHeaderPacket (byte[] guid, Int16 mediaTypeIdentifier, Int16 mediaTransferCompressioIdentifier, Int32
packetCount, Int32 totalPayloadDataLength, Int32 originatingDataLength, byte[] payload, Int64 sequence←↩
Number)

The function initializes a new MediaHeaderPacket instance that has the specified source Guid, media type identified,
media transfer compression identified, packet count, total payload data length, originating data length, sequence
number and payload data

• MediaHeaderPacket (byte[] guid, Int16 mediaTypeIdentifier, Int16 mediaTransferCompressioIdentifier, Int32
packetCount, Int32 totalPayloadDataLength, Int32 originatingDataLength, byte[] payload)

The function initializes a new MediaHeaderPacket instance that has the specified source Guid, media type identified,
media transfer compression identified, packet count, total payload data length, originating data length and payload
data

• byte[] GetBytes (long sequenceNumber)

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.5 MediaHeaderPacket Class Reference 15

The function saves the given sequence number and returns the data header of the given sequence.

• void FromBytes (byte[] packetBytes)

The function gets the media data, the packet control data and the packet data from the given packet and saves them.

• byte[] GetBytes ()

The function returns the data header of the currently saved sequence.

Public Attributes

• const int HeaderLengthInOctets = 41

The specified length of the packet header in octets.

• const byte PacketId = 0

The specified id of the packet type. It is used to identify a packet.

Properties

• string SourceGuid [get]

The function to get the Guid identifying the sender.

• Int64 Sequence [get, set]

The function to get and set the sequence number of this packet.

• Int32 TotalPacketCount [get]

The function to get the total count of packets in the related transfer sequence.

• Int32 TotalPayloadDataLength [get]

The function to get the total length of payload data in the related transfer sequence.

• Int32 OriginatingDataLength [get]

The function to get the original length of the data prior to encoding it into the transfer format.

• Int16 MediaFormat [get]

The function to get the format of media in the packet.

• Int16 MediaTransferCompression [get]

The function to get the compression format of media in the packet.

• byte[] PayloadData [get]

The function to get the payload data in this packet.

2.5.1 Detailed Description

The class represents media information and payload data up to one network MTU in length from a MediaPacket.
MediaHeaderPackets are used to transfer a portion of payload data and the media information from a MediaPacket.
The combination of a MediaHeaderPacket and the subsequent MediaContinuationPackets is a transfer sequence.

<author>Veli-Mikko Puupponen</author> The packet consist of a packet type identifier, sender GUID, a Int64
sequence number, media type identifier, media compression identified, payload data length and originating data
length.

The packet must always have payload data. If the payload data length is smaller than network MTU, the transfer
sequence can consist of only a single MediaHeaderPacket.

2.5.2 Constructor & Destructor Documentation

2.5.2.1 MediaHeaderPacket ()

The function initializes a new MediaHeaderPacket instance with no parameters.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

16 CONTENTS

2.5.2.2 MediaHeaderPacket (byte[] guid, Int16 mediaTypeIdentifier, Int16 mediaTransferCompressioIdentifier, Int32
packetCount, Int32 totalPayloadDataLength, Int32 originatingDataLength, byte[] payload, Int64 sequenceNumber)

The function initializes a new MediaHeaderPacket instance that has the specified source Guid, media type identified,
media transfer compression identified, packet count, total payload data length, originating data length, sequence
number and payload data

Parameters

guid Sthe string representation of the sender’s Guid.
mediaType←↩

Identifier
The payload media type.

mediaTransfer←↩
Compressio←↩

Identifier

The payload media transfer compression type.

packetCount Total count of packets in the related trasfer sequence.
totalPayload←↩

DataLength
The total number of payload octets in the complete related trasfer sequence.

originating←↩
DataLength

The original length of the data before encoding into the transfer format.

payload The payload data in this packet.
sequence←↩

Number
The squence number for this packet, must not vary within a transfer sequence.

2.5.2.3 MediaHeaderPacket (byte[] guid, Int16 mediaTypeIdentifier, Int16 mediaTransferCompressioIdentifier, Int32
packetCount, Int32 totalPayloadDataLength, Int32 originatingDataLength, byte[] payload)

The function initializes a new MediaHeaderPacket instance that has the specified source Guid, media type identified,
media transfer compression identified, packet count, total payload data length, originating data length and payload
data

The sequence number must be provided prior any calls to the parameterless GetBytes.

Parameters

guid Sthe string representation of the sender’s Guid.
mediaType←↩

Identifier
The payload media type.

mediaTransfer←↩
Compressio←↩

Identifier

The payload media transfer compression type.

packetCount Total count of packets in the related trasfer sequence.
totalPayload←↩

DataLength
The total number of payload octets in the complete related trasfer sequence.

originating←↩
DataLength

The original length of the data before encoding into the transfer format.

payload The payload data in this packet.

2.5.3 Member Function Documentation

2.5.3.1 void FromBytes (byte[] packetBytes)

The function gets the media data, the packet control data and the packet data from the given packet and saves
them.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.5 MediaHeaderPacket Class Reference 17

Parameters

packetBytes The given data.

Implements INetworkPacket.

2.5.3.2 byte [] GetBytes (long sequenceNumber)

The function saves the given sequence number and returns the data header of the given sequence.

Parameters

sequence←↩
Number

The sequence to retrieve.

Returns

The data header of given the sequence.

2.5.3.3 byte [] GetBytes ()

The function returns the data header of the currently saved sequence.

Returns

The data header of current the sequence.

Implements INetworkPacket.

2.5.4 Member Data Documentation

2.5.4.1 const int HeaderLengthInOctets = 41

The specified length of the packet header in octets.

2.5.4.2 const byte PacketId = 0

The specified id of the packet type. It is used to identify a packet.

2.5.5 Property Documentation

2.5.5.1 Int16 MediaFormat [get]

The function to get the format of media in the packet.

2.5.5.2 Int16 MediaTransferCompression [get]

The function to get the compression format of media in the packet.

2.5.5.3 Int32 OriginatingDataLength [get]

The function to get the original length of the data prior to encoding it into the transfer format.

2.5.5.4 byte [] PayloadData [get]

The function to get the payload data in this packet.

2.5.5.5 Int64 Sequence [get], [set]

The function to get and set the sequence number of this packet.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

18 CONTENTS

2.5.5.6 string SourceGuid [get]

The function to get the Guid identifying the sender.

2.5.5.7 Int32 TotalPacketCount [get]

The function to get the total count of packets in the related transfer sequence.

2.5.5.8 Int32 TotalPayloadDataLength [get]

The function to get the total length of payload data in the related transfer sequence.

The documentation for this class was generated from the following file:

• MediaHeaderPacket.cs

2.6 MediaInformation Class Reference

The class for media type information. It is used to the format and the compression of a media.

Public Member Functions

• MediaInformation (MediaFormat format, TransferCompression compression)

The function initializes a new MediaFormat instance with the specified media type parameters.

Properties

• MediaFormat Format [get, set]

The function to set and get the media format.

• TransferCompression Compression [get, set]

The function to set and get the media compression format.

2.6.1 Detailed Description

The class for media type information. It is used to the format and the compression of a media.

<author>Veli-Mikko Puupponen</author>

2.6.2 Constructor & Destructor Documentation

2.6.2.1 MediaInformation (MediaFormat format, TransferCompression compression)

The function initializes a new MediaFormat instance with the specified media type parameters.

Parameters

format The format of the media.
compression The media transfer compression format.

2.6.3 Property Documentation

2.6.3.1 TransferCompression Compression [get], [set]

The function to set and get the media compression format.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.7 MediaPacket Class Reference 19

2.6.3.2 MediaFormat Format [get], [set]

The function to set and get the media format.

The documentation for this class was generated from the following file:

• MediaInformation.cs

2.7 MediaPacket Class Reference

The class representts a user-level media packet. The packet is used when receiving and sending media using the
UdpMediaClientSocket. It encapsulates the complete media data and media type information. It can provide a
collection of NetworkPackets conforming to the network MTU for network transfer. It can later be reconstructed from
such packets at the receiving end.

Public Member Functions

• MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, Int64 sequenceNumber, string guid)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid and
sequence number.

• MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid, Int32 originatingLength, Int64
sequenceNumber)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid, origi-
nal data length and sequence number.

• MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid, Int32 originatingLength)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid and
original data length.

• MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid)

The function nstantializes a new MediaPacket with the specified media information, payload data and sender Guid.

• MediaPacket (MediaHeaderPacket newHeaderPacket)

The function nstantializes a new MediaPacket using the MediaHeaderPacket from a network transfer packet se-
quence. If MediaPacket from which the MediaHeaderPacket was derived and had no more than one network MTU of
payload data, this MediaPacket instance is now complete (HasAllContinuationPackets = true).

• MediaPacket (MediaContinuationPacket oneContinuationPacket)

The function nstantializes a new MediaPacket using any MediaContinuationPacket from a network transfer packet
sequence. All MediaPackets require at least the MediaHeaderPacket from the relevant packet sequence generated
from the original MediaPacket. Therefore this MediaPacket will not be complete until at least the MediaHeaderPacket
has been added using the method AddHeaderPacket.

• bool AddHeaderPacket (MediaHeaderPacket newHeaderPacket)

The function adds a header packet to this MediaPacket. If there already is a header packet in this instance, it returns
the HasAllContinuationPackets indicating whether some continuation packets are missing or not.

• bool AddContinuationPacket (MediaContinuationPacket continuationPacket)

The function adds a MediaContinuationPacket to this MediaPacket. It returns a boolean indicaing if all Media←↩
ContinuationPackets necessary to complete this MediaPacket have now been added.

• INetworkPacket[] GetAllTransmissionPackets (int mtu)

The function converts this MediaPacket into a collection of NetworkPackets for network transfer. All resulting
networkPackets will have a byte representation with length no more that the specified MTU.

Properties

• Int32 OriginatingDataLength [get]

The function to get the original length of the data prior to encoding into the specified transfer format.

• Int64 Sequence [get, set]

The function to get and set the sequence number of this packet.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

20 CONTENTS

• bool HasAllContinuationPackets [get]

The function returns True, if not reconstructed from a network packet sequence or hass all packets from the relevant
sequence. False otherwise.

• bool PayloadLengthMismatched [get]

The function returns True, if the packet is reconstructed from a network packet sequence and one or more subpackets
had an unexpected payload data length. Otherwise false.

• string SenderGuid [get]

The function to get the string Guid identifying the sender.

• DateTime InitializationTime [get]

The function to get the time of the instantialization of the instance.

• byte[] CompletePayloadData [get]

The function to get the complete payload data for this instance.

• MediaInformation PacketMediaInformation [get]

The function to get the MediaInformation describing the media in this instance. Can be null on a packet constructed
from a subpacket transfer sequence.

2.7.1 Detailed Description

The class representts a user-level media packet. The packet is used when receiving and sending media using the
UdpMediaClientSocket. It encapsulates the complete media data and media type information. It can provide a
collection of NetworkPackets conforming to the network MTU for network transfer. It can later be reconstructed from
such packets at the receiving end.

<author>Veli-Mikko Puupponen</author>

2.7.2 Constructor & Destructor Documentation

2.7.2.1 MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, Int64 sequenceNumber, string guid)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid and
sequence number.

It throws an ArgumentException if any of the arguments is null or the payload data length is zero.

Parameters

mediaInfo The MediaInformation instance describing the data contained in this instance.
mediaPayload The media data.

sequence←↩
Number

The sequence number for all subpackets generated from this packet during network trans-
mission.

guid The string representation of the sender’s Guid.

2.7.2.2 MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid, Int32 originatingLength, Int64
sequenceNumber)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid,
original data length and sequence number.

It throws an ArgumentException if any of the arguments is null or the payload data length is zero.

Parameters

mediaInfo The MediaInformation instance describing the data contained in this instance.
mediaPayload The media data.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.7 MediaPacket Class Reference 21

guid The string representation of the sender’s Guid.
originating←↩

Length
The riginal length of the data prior to encoding into the specified transfer format.

sequence←↩
Number

The sequence number for all subpackets generated from this packet during network trans-
mission.

2.7.2.3 MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid, Int32 originatingLength)

The function nstantializes a new MediaPacket with the specified media information, payload data, sender Guid and
original data length.

It throws an ArgumentException if any of the arguments is null or the payload data length is zero.

Parameters

mediaInfo The MediaInformation instance describing the data contained in this instance.
mediaPayload The media data.

guid The string representation of the sender’s Guid.
originating←↩

Length
The riginal length of the data prior to encoding into the specified transfer format.

2.7.2.4 MediaPacket (MediaInformation mediaInfo, byte[] mediaPayload, string guid)

The function nstantializes a new MediaPacket with the specified media information, payload data and sender Guid.

It throws an ArgumentException if any of the arguments is null, the payload data length is zero or the Guid format is
incorrect.

Parameters

mediaInfo The MediaInformation instance describing the data contained in this instance.
mediaPayload The media data.

guid The string representation of the sender’s Guid.

2.7.2.5 MediaPacket (MediaHeaderPacket newHeaderPacket)

The function nstantializes a new MediaPacket using the MediaHeaderPacket from a network transfer packet se-
quence. If MediaPacket from which the MediaHeaderPacket was derived and had no more than one network MTU
of payload data, this MediaPacket instance is now complete (HasAllContinuationPackets = true).

Otherwise the MediaContinuationPackets from the transfer sequence need to be added to this instace using the
method AddContinuationPacket.

It throws an ArgumentException if the MediaHeaderPacket is not valid.

Parameters

newHeader←↩
Packet

The MediaHeaderPacket instance.

2.7.2.6 MediaPacket (MediaContinuationPacket oneContinuationPacket)

The function nstantializes a new MediaPacket using any MediaContinuationPacket from a network transfer packet
sequence. All MediaPackets require at least the MediaHeaderPacket from the relevant packet sequence generated
from the original MediaPacket. Therefore this MediaPacket will not be complete until at least the MediaHeader←↩
Packet has been added using the method AddHeaderPacket.

Otherwise the MediaContinuationPackets from the transfer sequence need to be added to this instace using the
method AddContinuationPacket.

It throws an ArgumentException if the MediaHeaderPacket is not valid.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

22 CONTENTS

Parameters

continuation←↩
Packet

The MediaContinuationPacket that is a part of the related transfer packet sequence.

2.7.3 Member Function Documentation

2.7.3.1 bool AddContinuationPacket (MediaContinuationPacket continuationPacket)

The function adds a MediaContinuationPacket to this MediaPacket. It returns a boolean indicaing if all Media←↩
ContinuationPackets necessary to complete this MediaPacket have now been added.

It throws an ArgumentException if the MediaContinuationPacket is not valid or has a mismatching sequence number
or guid.

Parameters

continuation←↩
Packet

The MediaContinuationPacket that is a part of the related transfer packet sequence.

Returns

True, if this MediaPacket now has all continuation packets, otherwise false.

2.7.3.2 bool AddHeaderPacket (MediaHeaderPacket newHeaderPacket)

The function adds a header packet to this MediaPacket. If there already is a header packet in this instance, it returns
the HasAllContinuationPackets indicating whether some continuation packets are missing or not.

If the MediaHeaderPacket is valid for this instance and no MediaContinuationPackets are missing, it returns true
indicating that this instance is now complete.

It throws an ArgumentException if the MediaHeaderPacket is not valid or has a mismatching sequence number or
guid.

Parameters

newHeader←↩
Packet

The header packet for supplying first part of the payload data and overall information to this
instance.

Returns

True, if this instance now has all subpackets from the relevant transfer packet sequence, otherwise false.

2.7.3.3 INetworkPacket [] GetAllTransmissionPackets (int mtu)

The function converts this MediaPacket into a collection of NetworkPackets for network transfer. All resulting
networkPackets will have a byte representation with length no more that the specified MTU.

The MTU has to be 100 bytes or more. It throws an ArgumentException if MTU < 100.

Parameters

mtu The maximal network transmission unit size used to limit the resulting NetworkPacket payload
sizes.

Returns

A collection of mediapackets from the given mediapacket.

2.7.4 Property Documentation

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.8 PingPacket Class Reference 23

2.7.4.1 byte [] CompletePayloadData [get]

The function to get the complete payload data for this instance.

2.7.4.2 bool HasAllContinuationPackets [get]

The function returns True, if not reconstructed from a network packet sequence or hass all packets from the relevant
sequence. False otherwise.

2.7.4.3 DateTime InitializationTime [get]

The function to get the time of the instantialization of the instance.

2.7.4.4 Int32 OriginatingDataLength [get]

The function to get the original length of the data prior to encoding into the specified transfer format.

2.7.4.5 MediaInformation PacketMediaInformation [get]

The function to get the MediaInformation describing the media in this instance. Can be null on a packet constructed
from a subpacket transfer sequence.

2.7.4.6 bool PayloadLengthMismatched [get]

The function returns True, if the packet is reconstructed from a network packet sequence and one or more subpack-
ets had an unexpected payload data length. Otherwise false.

2.7.4.7 string SenderGuid [get]

The function to get the string Guid identifying the sender.

2.7.4.8 Int64 Sequence [get], [set]

The function to get and set the sequence number of this packet.

The documentation for this class was generated from the following file:

• MediaPacket.cs

2.8 PingPacket Class Reference

The class represents a ping packet for the protocol defined and implemented by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID and a Int64 sequence number.

Inherits INetworkPacket.

Public Member Functions

• PingPacket ()

The function to initializes a new ping packet with no information.

• PingPacket (string guid, Int64 sequenceNumber)

The function initializes a new ping packet that has the provided sequence number and sender GUID.

• PingPacket (string guid)

The function initializes a new ping packet that has the provided sender GUID.

• byte[] GetBytes (long sequenceNumber)

The function saves the given sequence number and reurns the data of the given sequence.

• void FromBytes (byte[] packetBytes)

The function gets the guid and the sequence from the data header of the given data and saves them.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

24 CONTENTS

• byte[] GetBytes ()

The function returns the data of the given sequence.

Public Attributes

• const int HeaderLengthInOctets = 25

The specified length of the packet header in octects.

• const byte PacketId = 3

The specified id of the packet type. It is used to identify a packet.

Properties

• string SourceGuid [get]

String represenstation of the Guid identifying the sender.

• Int64 Sequence [get, set]

The function sets and gets the packet sequence number.

2.8.1 Detailed Description

The class represents a ping packet for the protocol defined and implemented by the UdpMediaClientSocket. The
packet consist of a packet type identifier, a sender GUID and a Int64 sequence number.

<author>Veli-Mikko Puupponen</author>

2.8.2 Constructor & Destructor Documentation

2.8.2.1 PingPacket ()

The function to initializes a new ping packet with no information.

2.8.2.2 PingPacket (string guid, Int64 sequenceNumber)

The function initializes a new ping packet that has the provided sequence number and sender GUID.

Parameters

guid Guid of the sender.
sequence←↩

Number
Packet sequence number.

2.8.2.3 PingPacket (string guid)

The function initializes a new ping packet that has the provided sender GUID.

Parameters

guid The guid of the sender.

2.8.3 Member Function Documentation

2.8.3.1 void FromBytes (byte[] packetBytes)

The function gets the guid and the sequence from the data header of the given data and saves them.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.9 UdpMediaClientSocket Class Reference 25

Parameters

packetBytes The given data.

Implements INetworkPacket.

2.8.3.2 byte [] GetBytes (long sequenceNumber)

The function saves the given sequence number and reurns the data of the given sequence.

Parameters

sequence←↩
Number

The sequence to retrive.

Returns

The data of given the sequence.

2.8.3.3 byte [] GetBytes ()

The function returns the data of the given sequence.

Returns

The packet data.

Implements INetworkPacket.

2.8.4 Member Data Documentation

2.8.4.1 const int HeaderLengthInOctets = 25

The specified length of the packet header in octects.

2.8.4.2 const byte PacketId = 3

The specified id of the packet type. It is used to identify a packet.

2.8.5 Property Documentation

2.8.5.1 Int64 Sequence [get], [set]

The function sets and gets the packet sequence number.

2.8.5.2 string SourceGuid [get]

String represenstation of the Guid identifying the sender.

The documentation for this class was generated from the following file:

• PingPacket.cs

2.9 UdpMediaClientSocket Class Reference

The class is client socket implementing a simple UDP-based media transfer protocol. Delivery of packets is not
guaranteed. Sent packets are split to conform to the specified MTU. The underlaying IP checksum is relied upon
for the integrity of the packets. The constant ping packets are employed to monitor the connection and to keep the
UDP packets routed in both directions by the network channel.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

26 CONTENTS

Public Member Functions

• UdpMediaClientSocket (string serverIpAddress, int serverPort, int localPort, string clientGuid, int networkMtu,
int timeOutMillis)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used for
identifying this client during the connection. The socket is not connected before a call to the Connect method. The
socket will use the specified MTU on the network packets. The underlying UDP socket will use the specified port at
the local system.

• UdpMediaClientSocket (string serverIpAddress, int serverPort, int localPort, string clientGuid, int networkMtu)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used for
identifying this client during the connection. The socket is not connected before a call to the Connect method. The
socket will use the specified MTU on the network packets. The underlying UDP socket will use the specified port at
the local system.

• UdpMediaClientSocket (string serverIpAddress, int serverPort, string clientGuid, int networkMtu)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used for
identifying this client during the connection. The socket is not connected before a call to the Connect method. The
socket will use the specified MTU on the network packets.

• UdpMediaClientSocket (string serverIpAddress, int serverPort, string clientGuid)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used for
identifying this client during the connection. The socket is not connected before a call to the Connect method. The
socket will use a default MTU of 1024 bytes on the network.

• UdpMediaClientSocket (int pingLossLimit, string serverIpAddress, int serverPort, string clientGuid)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used for
identifying this client during the connection. The socket is not connected before a call to the Connect method. The
socket will use a default MTU of 1024 bytes on the network.

• void Disconnect ()

The function dsconnets the connected instance.

• void Connect ()

The function connects a non-connected instance. This method needs to be called prior to any send operations for
them to succeed.

• bool SendMedia (MediaInformation mediaInfo, byte[] mediaData, int mediaOriginalLength)

The function sends a media to the remote host. Retuns true if the packet was successfully enqueued to the outgoing
media packet queue. If the socket is not connected, has become faulted or the outgoing packet queue is already
filled, returns false.

• bool SendRoutingRequest (string fromGuid, string toGuid, bool enableRouting)

The function sends a routing request to the remote host. The socket enforces no rules on the guids that are specified
on the request.

Public Attributes

• MediaPacketReceived MediaPacketReceivedEvent

The event for the MediaPacketReceived delegate function.

• ControlPacketReceived ControlPacketReceivedEvent

The event for the ControlPacketReceived delegate function.

• SuspectedConnectionProblem SuspectedConnectionProblemEvent

The event for the SuspectedConnectionProblem delegate function.

• ConnectionFailed ConnectionFailedEvent

The event for the ConnectionFailed delegate function.

Properties

• int SocketTimeoutMilliseconds [get, set]

The function to set and get the socket timeout in milliseconds.

• bool IsFaulted [get]

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.9 UdpMediaClientSocket Class Reference 27

The function returns True, if the socket has been enabled and the connection to the remote host has failed. Such a
socket is no longer enabled. Otherwise false.

• bool IsEnabled [get]

The function returns true, if the socket is enabled and functional. Otherwise false.

2.9.1 Detailed Description

The class is client socket implementing a simple UDP-based media transfer protocol. Delivery of packets is not
guaranteed. Sent packets are split to conform to the specified MTU. The underlaying IP checksum is relied upon
for the integrity of the packets. The constant ping packets are employed to monitor the connection and to keep the
UDP packets routed in both directions by the network channel.

<author>Veli-Mikko Puupponen</author> This socket is usable in both peer-to-peer and server connection sce-
narios.

The existance of a remote host is monitored with constant ping packets. If excessive number of consecutive ping
replies is lost, the socket is deemed faulted and the ConnectionFailedEvent is fired.

Uses separate sequence number counters for control, ping and media transfer packets.

2.9.2 Constructor & Destructor Documentation

2.9.2.1 UdpMediaClientSocket (string serverIpAddress, int serverPort, int localPort, string clientGuid, int networkMtu,
int timeOutMillis)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used
for identifying this client during the connection. The socket is not connected before a call to the Connect method.
The socket will use the specified MTU on the network packets. The underlying UDP socket will use the specified
port at the local system.

Parameters

serverIpAddress The ip address of the server or peer in the standard string format.
serverPort The port at the remote host.

localPort The port at the local system.
clientGuid The guid identifying this client.

networkMtu The MTU for the underlying network.
timeOutMillis The time-out limit for send operations on the underlying UDP socket.

2.9.2.2 UdpMediaClientSocket (string serverIpAddress, int serverPort, int localPort, string clientGuid, int networkMtu)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used
for identifying this client during the connection. The socket is not connected before a call to the Connect method.
The socket will use the specified MTU on the network packets. The underlying UDP socket will use the specified
port at the local system.

Parameters

serverIpAddress The ip address of the server or peer in the standard string format.
serverPort The port at the remote host.

localPort the port at the local system.
clientGuid The guid identifying this client.

networkMtu The MTU for the underlying network.

2.9.2.3 UdpMediaClientSocket (string serverIpAddress, int serverPort, string clientGuid, int networkMtu)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used
for identifying this client during the connection. The socket is not connected before a call to the Connect method.
The socket will use the specified MTU on the network packets.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

28 CONTENTS

Parameters

serverIpAddress The ip address of the server or peer in the standard string format.
serverPort The port at the remote host.
clientGuid The guid identifying this client.

networkMtu The MTU for the underlying network.

2.9.2.4 UdpMediaClientSocket (string serverIpAddress, int serverPort, string clientGuid)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used
for identifying this client during the connection. The socket is not connected before a call to the Connect method.
The socket will use a default MTU of 1024 bytes on the network.

Parameters

serverIpAddress The ip address of the server or peer in the standard string format.
serverPort The port at the remote host.
clientGuid The guid identifying this client.

2.9.2.5 UdpMediaClientSocket (int pingLossLimit, string serverIpAddress, int serverPort, string clientGuid)

The function initializes a new UdpMediaClientSocket to connect to the specified host. The provided GUID is used
for identifying this client during the connection. The socket is not connected before a call to the Connect method.
The socket will use a default MTU of 1024 bytes on the network.

Parameters

pingLossLimit The meximum allowable number of lost consecutive ping packets.
serverIpAddress The ip address of the server or peer in the standard string format.

serverPort The port at the remote host.
clientGuid The guid identifying this client.

2.9.3 Member Function Documentation

2.9.3.1 void Connect ()

The function connects a non-connected instance. This method needs to be called prior to any send operations for
them to succeed.

2.9.3.2 void Disconnect ()

The function dsconnets the connected instance.

2.9.3.3 bool SendMedia (MediaInformation mediaInfo, byte[] mediaData, int mediaOriginalLength)

The function sends a media to the remote host. Retuns true if the packet was successfully enqueued to the outgoing
media packet queue. If the socket is not connected, has become faulted or the outgoing packet queue is already
filled, returns false.

Parameters

mediaInfo The information describing the outgoing media.
mediaData The media data bytes.

mediaOriginal←↩
Length

The length of the original data in case of compressions that require this value for decompres-
sion at the remote end.

Returns

True if the packet was successfully enqueued to the outgoing media packet queue, otherwise False.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

2.9 UdpMediaClientSocket Class Reference 29

2.9.3.4 bool SendRoutingRequest (string fromGuid, string toGuid, bool enableRouting)

The function sends a routing request to the remote host. The socket enforces no rules on the guids that are specified
on the request.

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

30 CONTENTS

Parameters

fromGuid The guid of the source for the routing request.
toGuid The guid of the target for the routing request.

enableRouting Whether routing between the client sockets using the specified should be enabled or disabled.

Returns

True if the routing request was successfully sent, otherwise False.

2.9.4 Member Data Documentation

2.9.4.1 ConnectionFailed ConnectionFailedEvent

The event for the ConnectionFailed delegate function.

2.9.4.2 ControlPacketReceived ControlPacketReceivedEvent

The event for the ControlPacketReceived delegate function.

2.9.4.3 MediaPacketReceived MediaPacketReceivedEvent

The event for the MediaPacketReceived delegate function.

2.9.4.4 SuspectedConnectionProblem SuspectedConnectionProblemEvent

The event for the SuspectedConnectionProblem delegate function.

2.9.5 Property Documentation

2.9.5.1 bool IsEnabled [get]

The function returns true, if the socket is enabled and functional. Otherwise false.

2.9.5.2 bool IsFaulted [get]

The function returns True, if the socket has been enabled and the connection to the remote host has failed. Such a
socket is no longer enabled. Otherwise false.

2.9.5.3 int SocketTimeoutMilliseconds [get], [set]

The function to set and get the socket timeout in milliseconds.

The documentation for this class was generated from the following file:

• UdpMediaClientSocket.cs

Generated on Wed Jun 25 2014 00:38:35 for Halyri - Udp by Doxygen

	1 Namespace Documentation
	1.1 Package SimpleUdpMediaClient
	1.1.1 Function Documentation

	1.2 Package SimpleUdpMediaClient.Collections
	1.3 Package SimpleUdpMediaClient.Packets
	1.3.1 Enumeration Type Documentation

	2 Class Documentation
	2.1 BlockingQueue< T > Class Template Reference
	2.1.1 Detailed Description
	2.1.2 Constructor & Destructor Documentation
	2.1.3 Member Function Documentation

	2.2 ControlPacket Class Reference
	2.2.1 Detailed Description
	2.2.2 Member Enumeration Documentation
	2.2.3 Constructor & Destructor Documentation
	2.2.4 Member Function Documentation
	2.2.5 Member Data Documentation
	2.2.6 Property Documentation

	2.3 INetworkPacket Interface Reference
	2.3.1 Detailed Description
	2.3.2 Member Function Documentation

	2.4 MediaContinuationPacket Class Reference
	2.4.1 Detailed Description
	2.4.2 Constructor & Destructor Documentation
	2.4.3 Member Function Documentation
	2.4.4 Member Data Documentation
	2.4.5 Property Documentation

	2.5 MediaHeaderPacket Class Reference
	2.5.1 Detailed Description
	2.5.2 Constructor & Destructor Documentation
	2.5.3 Member Function Documentation
	2.5.4 Member Data Documentation
	2.5.5 Property Documentation

	2.6 MediaInformation Class Reference
	2.6.1 Detailed Description
	2.6.2 Constructor & Destructor Documentation
	2.6.3 Property Documentation

	2.7 MediaPacket Class Reference
	2.7.1 Detailed Description
	2.7.2 Constructor & Destructor Documentation
	2.7.3 Member Function Documentation
	2.7.4 Property Documentation

	2.8 PingPacket Class Reference
	2.8.1 Detailed Description
	2.8.2 Constructor & Destructor Documentation
	2.8.3 Member Function Documentation
	2.8.4 Member Data Documentation
	2.8.5 Property Documentation

	2.9 UdpMediaClientSocket Class Reference
	2.9.1 Detailed Description
	2.9.2 Constructor & Destructor Documentation
	2.9.3 Member Function Documentation
	2.9.4 Member Data Documentation
	2.9.5 Property Documentation

